Opencv数一数有多少个水晶贴纸?

1.目标-数出有多少个贴纸

好久没更新博客了,最近家里小朋友在一张A3纸上贴了很多水晶贴纸,要让我帮他数有多少个,看上去有点多,贴的也比较随意,于是想着使用Opencv来识别一下有多少个。

原图如下:

代码:

复制代码
import cv2
import numpy as np
from matplotlib import pyplot as plt


def count_stars(image_path):
    # 读取图像
    image = cv2.imread(image_path)

    # # 显示原始图像
    # plt.figure()
    # plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    # plt.title('Original Image')

    # 转换为灰度图像
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    # # 显示灰度图像
    # plt.figure()
    # plt.imshow(gray, cmap='gray')
    # plt.title('Gray Image')

    # 应用高斯模糊以减少噪声
    gs=85
    blurred = cv2.GaussianBlur(gray, (gs, gs), 0)

    # # 显示高斯模糊后的图像
    # plt.figure()
    # plt.imshow(blurred, cmap='gray')
    # plt.title('Blurred Image')
    # # plt.show()

    # 使用自适应阈值进行二值化
    binary = cv2.adaptiveThreshold(blurred, 255,
                                   cv2.ADAPTIVE_THRESH_MEAN_C,
                                   cv2.THRESH_BINARY_INV, 125, 2)

    # 显示二值化后的图像
    plt.figure()
    plt.imshow(binary, cmap='gray')
    plt.title('Binary Image')
    plt.show()

    # 查找轮廓
    contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL,
                                   cv2.CHAIN_APPROX_SIMPLE)

    # 绘制轮廓
    contour_image = np.copy(image)
    cv2.drawContours(contour_image, contours, -1, (0, 255, 0), 3)

    # 计数星星(即轮廓的数量)
    star_count = len(contours)
    # 显示带有轮廓的图像
    plt.figure()
    plt.imshow(cv2.cvtColor(contour_image, cv2.COLOR_BGR2RGB))
    plt.title('Image with Contours'+str(star_count))
    plt.show()

    return star_count

# 图像路径
image_path = '202406150928253.jpg'

# 计算星星数量
num_stars = count_stars(image_path)
print(f'Number of stars: {num_stars}')

2.使用原图计算效果

有很多斑点干扰了统计结果。

3.图像优化处理

对图像进行优化处理再进行计算。使用PS工具对图像背景进行去除。

PS处理之后的图(魔术橡皮擦擦掉背景)),有些透明水晶贴纸和背景色接近被处理了一部分。

最后的结果没有进行人工确认,不过看上去基本是正确的。有兴趣的朋友可以比对一下。

仔细看左上角有点问题,多了一些,擦除后重新计算得到209个,家里小朋友数的202个。

相关推荐
AKAMAI17 分钟前
从 Cloudflare 服务中断,看建立多维度风险应对机制的必要
人工智能·云原生·云计算
道可云26 分钟前
道可云人工智能每日资讯|2025青岛虚拟现实创新大会即将举行
人工智能·vr
酷雷曼VR全景31 分钟前
身边的变化丨从“尝鲜”到“刚需”,VR全景让生活“立体化”
人工智能·生活·vr·vr全景·酷雷曼·合作商
m0_6501082437 分钟前
Flamingo:打破模态壁垒的少样本视觉语言模型
论文阅读·人工智能·视觉语言模型·deepmind·vlm·通用智能·通用小样本适配
gorgeous(๑>؂<๑)42 分钟前
【ICLR26匿名投稿】Context-Aware ViT:让目标检测真正“看清上下文”的增强策略
人工智能·目标检测·机器学习·计算机视觉·目标跟踪
AI大模型学徒43 分钟前
NLP基础(七)_文本分析与关键词提取
人工智能·自然语言处理
汤姆yu1 小时前
基于深度学习的健康饮食推荐系统
人工智能·深度学习
2501_941149111 小时前
AI与自动化:未来工作的变革与机遇
人工智能
张人玉1 小时前
OCR 字符识别助手详解(含 Halcon 示例)
人工智能·机器学习·计算机视觉·halcon
z***I3941 小时前
Git机器学习
人工智能·git·机器学习