Opencv数一数有多少个水晶贴纸?

1.目标-数出有多少个贴纸

好久没更新博客了,最近家里小朋友在一张A3纸上贴了很多水晶贴纸,要让我帮他数有多少个,看上去有点多,贴的也比较随意,于是想着使用Opencv来识别一下有多少个。

原图如下:

代码:

复制代码
import cv2
import numpy as np
from matplotlib import pyplot as plt


def count_stars(image_path):
    # 读取图像
    image = cv2.imread(image_path)

    # # 显示原始图像
    # plt.figure()
    # plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
    # plt.title('Original Image')

    # 转换为灰度图像
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    # # 显示灰度图像
    # plt.figure()
    # plt.imshow(gray, cmap='gray')
    # plt.title('Gray Image')

    # 应用高斯模糊以减少噪声
    gs=85
    blurred = cv2.GaussianBlur(gray, (gs, gs), 0)

    # # 显示高斯模糊后的图像
    # plt.figure()
    # plt.imshow(blurred, cmap='gray')
    # plt.title('Blurred Image')
    # # plt.show()

    # 使用自适应阈值进行二值化
    binary = cv2.adaptiveThreshold(blurred, 255,
                                   cv2.ADAPTIVE_THRESH_MEAN_C,
                                   cv2.THRESH_BINARY_INV, 125, 2)

    # 显示二值化后的图像
    plt.figure()
    plt.imshow(binary, cmap='gray')
    plt.title('Binary Image')
    plt.show()

    # 查找轮廓
    contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL,
                                   cv2.CHAIN_APPROX_SIMPLE)

    # 绘制轮廓
    contour_image = np.copy(image)
    cv2.drawContours(contour_image, contours, -1, (0, 255, 0), 3)

    # 计数星星(即轮廓的数量)
    star_count = len(contours)
    # 显示带有轮廓的图像
    plt.figure()
    plt.imshow(cv2.cvtColor(contour_image, cv2.COLOR_BGR2RGB))
    plt.title('Image with Contours'+str(star_count))
    plt.show()

    return star_count

# 图像路径
image_path = '202406150928253.jpg'

# 计算星星数量
num_stars = count_stars(image_path)
print(f'Number of stars: {num_stars}')

2.使用原图计算效果

有很多斑点干扰了统计结果。

3.图像优化处理

对图像进行优化处理再进行计算。使用PS工具对图像背景进行去除。

PS处理之后的图(魔术橡皮擦擦掉背景)),有些透明水晶贴纸和背景色接近被处理了一部分。

最后的结果没有进行人工确认,不过看上去基本是正确的。有兴趣的朋友可以比对一下。

仔细看左上角有点问题,多了一些,擦除后重新计算得到209个,家里小朋友数的202个。

相关推荐
视觉语言导航30 分钟前
兼顾长、短视频任务的无人机具身理解!AirVista-II:面向动态场景语义理解的无人机具身智能体系统
人工智能·无人机·具身智能
墨绿色的摆渡人39 分钟前
pytorch小记(二十二):全面解读 PyTorch 的 `torch.cumprod`——累积乘积详解与实战示例
人工智能·pytorch·python
moonsims1 小时前
低空态势感知:基于AI的DAA技术是低空飞行的重要安全保障-机载端&地面端
人工智能·安全
若叶时代1 小时前
数据分析_Python
人工智能·python·数据分析
虾球xz1 小时前
游戏引擎学习第286天:开始解耦实体行为
c++·人工智能·学习·游戏引擎
武子康1 小时前
大语言模型 11 - 从0开始训练GPT 0.25B参数量 MiniMind2 准备数据与训练模型 DPO直接偏好优化
人工智能·gpt·ai·语言模型·自然语言处理
羽凌寒2 小时前
图像对比度调整(局域拉普拉斯滤波)
人工智能·计算机视觉
大模型铲屎官2 小时前
【Python-Day 14】玩转Python字典(上篇):从零开始学习创建、访问与操作
开发语言·人工智能·pytorch·python·深度学习·大模型·字典
一点.点2 小时前
计算机视觉的简单介绍
人工智能·深度学习·计算机视觉
量子-Alex2 小时前
【目标检测】【Transformer】Swin Transformer
人工智能·目标检测·transformer