PyTorch -- 最常见损失函数 LOSS 的选择

  • 损失函数 :度量模型的预测结果与真实值之间的差异;通过最小化 loss -> 最大化模型表现
  • 代码实现框架:设有 模型预测值 f (x), 真实值 y
    • 方法一: 步骤 1. criterion = torch.nn.某个Loss();步骤 2. loss = criterion(f(x), y)
    • 方法二:直接采用 F.某个_loss(f(x), y)

回归损失(Regression Loss):希望预测值和真实值接近,即 f(x) = y

  • torch.nn.L1Loss()】平均绝对值误差 MAE(Mean Abs Error): f (x) 和 y 之间差的绝对值的平均值
    • 具体数学计算公式: Loss = 1 n ∑ i = 0 n ∣ f ( x i ) − y i ∣ \text{Loss}=\frac{1}{n}\sum^n_{i=0} |f(x_i)-y_i| Loss=n1∑i=0n∣f(xi)−yi∣
    • 注:L1 损失, 主要用于回归问题和简单的模型,所以很少使用
  • torch.nn.MSELoss()】平均平方误差 MSE(Mean Squared Error): f (x) 和 y 之间差的平方的平均值
    • 具体数学计算公式: Loss = 1 n ∑ i = 0 n ( f ( x i ) − y i ) 2 \text{Loss}=\frac{1}{n}\sum^n_{i=0} (f(x_i)-y_i)^2 Loss=n1∑i=0n(f(xi)−yi)2: F.mse_loss(f(x), y)
    • 注:L2 损失, 很常用

分类损失(Classification Loss):希望分类准确率高等

  • torch.nn.CrossEntropyLoss()】分类交叉熵损失 CEL(Cross Entropy Loss): 和 KL divergence (衡量两个分布的相似度) 有关
    • 具体数学计算公式: − ∑ y i j log ⁡ ( f ( x i ) j ) -\sum y_{ij}\log(f(x_i)_j) −∑yijlog(f(xi)j), 注意其中 f ( x i ) f(x_i) f(xi) 表示模型预测出的概率值如 [0.1, 0.7, 0.2]: F.cross_entropy(直接传入 logits (已打包了 softmax))
    • 通常和 softmax (soft version of max S ( y i ) = e y i ∑ e y i S(y_i) = \frac{e^{y_i}}{\sum e^{y_i}} S(yi)=∑eyieyi: F.softmax(y)) 搭配使用 (softmax 负责产生上述概率输出)
    • logistic regression (按sigmoid输出的概率大小分类) 已被 classification 代替

相关推荐
政安晨2 小时前
政安晨【零基础玩转开源AI项目】- AutoGPT:全球首个自主AI Agent从入门到实战(致敬OpenClaw的小回顾)
人工智能·ai·autogpt·全球首个agent框架·致敬openclaw之作·参考价值·ai开源agent框架
Shawn_Shawn6 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
冷雨夜中漫步8 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
33三 三like8 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a8 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
郝学胜-神的一滴8 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
百锦再9 小时前
Reactive编程入门:Project Reactor 深度指南
前端·javascript·python·react.js·django·前端框架·reactjs
Forrit9 小时前
ptyorch安装
pytorch
腾讯云开发者10 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗10 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo