PyTorch -- 最常见损失函数 LOSS 的选择

  • 损失函数 :度量模型的预测结果与真实值之间的差异;通过最小化 loss -> 最大化模型表现
  • 代码实现框架:设有 模型预测值 f (x), 真实值 y
    • 方法一: 步骤 1. criterion = torch.nn.某个Loss();步骤 2. loss = criterion(f(x), y)
    • 方法二:直接采用 F.某个_loss(f(x), y)

回归损失(Regression Loss):希望预测值和真实值接近,即 f(x) = y

  • torch.nn.L1Loss()】平均绝对值误差 MAE(Mean Abs Error): f (x) 和 y 之间差的绝对值的平均值
    • 具体数学计算公式: Loss = 1 n ∑ i = 0 n ∣ f ( x i ) − y i ∣ \text{Loss}=\frac{1}{n}\sum^n_{i=0} |f(x_i)-y_i| Loss=n1∑i=0n∣f(xi)−yi∣
    • 注:L1 损失, 主要用于回归问题和简单的模型,所以很少使用
  • torch.nn.MSELoss()】平均平方误差 MSE(Mean Squared Error): f (x) 和 y 之间差的平方的平均值
    • 具体数学计算公式: Loss = 1 n ∑ i = 0 n ( f ( x i ) − y i ) 2 \text{Loss}=\frac{1}{n}\sum^n_{i=0} (f(x_i)-y_i)^2 Loss=n1∑i=0n(f(xi)−yi)2: F.mse_loss(f(x), y)
    • 注:L2 损失, 很常用

分类损失(Classification Loss):希望分类准确率高等

  • torch.nn.CrossEntropyLoss()】分类交叉熵损失 CEL(Cross Entropy Loss): 和 KL divergence (衡量两个分布的相似度) 有关
    • 具体数学计算公式: − ∑ y i j log ⁡ ( f ( x i ) j ) -\sum y_{ij}\log(f(x_i)_j) −∑yijlog(f(xi)j), 注意其中 f ( x i ) f(x_i) f(xi) 表示模型预测出的概率值如 [0.1, 0.7, 0.2]: F.cross_entropy(直接传入 logits (已打包了 softmax))
    • 通常和 softmax (soft version of max S ( y i ) = e y i ∑ e y i S(y_i) = \frac{e^{y_i}}{\sum e^{y_i}} S(yi)=∑eyieyi: F.softmax(y)) 搭配使用 (softmax 负责产生上述概率输出)
    • logistic regression (按sigmoid输出的概率大小分类) 已被 classification 代替

相关推荐
IT古董5 分钟前
第四章:大模型(LLM)】06.langchain原理-(3)LangChain Prompt 用法
java·人工智能·python
TGITCIC1 小时前
AI Search进化论:从RAG到DeepSearch的智能体演变全过程
人工智能·ai大模型·ai智能体·ai搜索·大模型ai·deepsearch·ai search
lucky_lyovo4 小时前
自然语言处理NLP---预训练模型与 BERT
人工智能·自然语言处理·bert
fantasy_arch5 小时前
pytorch例子计算两张图相似度
人工智能·pytorch·python
AndrewHZ6 小时前
【3D重建技术】如何基于遥感图像和DEM等数据进行城市级高精度三维重建?
图像处理·人工智能·深度学习·3d·dem·遥感图像·3d重建
飞哥数智坊6 小时前
Coze实战第18讲:Coze+计划任务,我终于实现了企微资讯简报的定时推送
人工智能·coze·trae
WBluuue6 小时前
数学建模:智能优化算法
python·机器学习·数学建模·爬山算法·启发式算法·聚类·模拟退火算法
Code_流苏7 小时前
AI热点周报(8.10~8.16):AI界“冰火两重天“,GPT-5陷入热议,DeepSeek R2模型训练受阻?
人工智能·gpt·gpt5·deepseek r2·ai热点·本周周报
赴3357 小时前
矿物分类案列 (一)六种方法对数据的填充
人工智能·python·机器学习·分类·数据挖掘·sklearn·矿物分类
大模型真好玩7 小时前
一文深度解析OpenAI近期发布系列大模型:意欲一统大模型江湖?
人工智能·python·mcp