本地部署 Stable Diffusion3

6月13日,Stability AI 正式开源20亿参数版本的Stable Diffusion 3 Medium。本文将在本地部署 SD3,GPU配置如下 GPU 2080TI / 22G

安装依赖

修改 WORKSPACE 位置信息,安装ComfyUI

复制代码
# #@title Environment Setup

from pathlib import Path

OPTIONS = {}
UPDATE_COMFY_UI = True  #@param {type:"boolean"}
INSTALL_COMFYUI_MANAGER = True  #@param {type:"boolean"}
INSTALL_ANIMATEDIFF = True  #@param {type:"boolean"}
INSTALL_CUSTOM_NODES_DEPENDENCIES = True  #@param {type:"boolean"}
OPTIONS['UPDATE_COMFY_UI'] = UPDATE_COMFY_UI
OPTIONS['INSTALL_COMFYUI_MANAGER'] = INSTALL_COMFYUI_MANAGER
OPTIONS['INSTALL_ANIMATEDIFF'] = INSTALL_ANIMATEDIFF
OPTIONS['INSTALL_CUSTOM_NODES_DEPENDENCIES'] = INSTALL_CUSTOM_NODES_DEPENDENCIES

WORKSPACE = "/notebook/SD/ComfyUI"



%cd /notebook/SD/

![ ! -d $WORKSPACE ] && echo -= Initial setup ComfyUI =- && git clone https://github.com/comfyanonymous/ComfyUI

%cd $WORKSPACE

!echo $WORKSPACE

if OPTIONS['UPDATE_COMFY_UI']:
  !echo "-= Updating ComfyUI =-"
  !git pull
 
!pip install -r requirements.txt

下载模型权重

复制代码
#@markdown ###Download standard resources

### SDXL
### I recommend these workflow examples: https://comfyanonymous.github.io/ComfyUI_examples/sdxl/

OPTIONS = {}

#@markdown **Models**

!wget -c "https://modelscope.cn/api/v1/models/AI-ModelScope/stable-diffusion-3-medium/repo?Revision=master&FilePath=sd3_medium.safetensors" -P ./models/checkpoints/

下载 Text Encoder

复制代码
#@markdown **clip**

!wget -c "https://modelscope.cn/api/v1/models/AI-ModelScope/stable-diffusion-3-medium/repo?Revision=master&FilePath=text_encoders%2Fclip_g.safetensors" -P ./models/clip/
!wget -c "https://modelscope.cn/api/v1/models/AI-ModelScope/stable-diffusion-3-medium/repo?Revision=master&FilePath=text_encoders%2Fclip_l.safetensors" -P ./models/clip/
!wget -c "https://modelscope.cn/api/v1/models/AI-ModelScope/stable-diffusion-3-medium/repo?Revision=master&FilePath=text_encoders%2Ft5xxl_fp16.safetensors" -P ./models/clip/
!wget -c "https://modelscope.cn/api/v1/models/AI-ModelScope/stable-diffusion-3-medium/repo?Revision=master&FilePath=text_encoders%2Ft5xxl_fp8_e4m3fn.safetensors" -P ./models/clip/
#通过cloudflared启动 ComfyUI ,
!wget "https://modelscope.oss-cn-beijing.aliyuncs.com/resource/cloudflared-linux-amd64.deb"
!dpkg -i cloudflared-linux-amd64.deb

启动 ComfyUI 服务器

复制代码
%cd /notebook/SD/ComfyUI
import subprocess
import threading
import time
import socket
import urllib.request

def iframe_thread(port):
  while True:
      time.sleep(0.5)
      sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
      result = sock.connect_ex(('127.0.0.1', port))
      if result == 0:
        break
      sock.close()
  print("\nComfyUI finished loading, trying to launch cloudflared (if it gets stuck here cloudflared is having issues)\n")

  p = subprocess.Popen(["cloudflared", "tunnel", "--url", "http://127.0.0.1:{}".format(port)], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
  for line in p.stderr:
    l = line.decode()
    if "trycloudflare.com " in l:
      print("This is the URL to access ComfyUI:", l[l.find("http"):], end='')
    #print(l, end='')


threading.Thread(target=iframe_thread, daemon=True, args=(8891,)).start()
!python main.py --dont-print-server  --listen "0.0.0.0"  --port 8891 

运行

服务器启动之后,导入工作流配置

  1. 导入配置文件,配置文件位置在 https://www.modelscope.cn/models/AI-ModelScope/stable-diffusion-3-medium/files,comfy_example_workflows/sd3_medium_example_workflow_basic.json
  2. 输入提示词,点击 Queue Prompt 生成图片。

总结

根据以下提示词,比较ChatGPT、Google 和 SD 的差距。

复制代码
A transparent glass of very very small slim capsule is being held by fingers, inside the capsule there is a nuclear explosion, there is smoke and fire, the background of a cozy room

ChatGPT

Google Gemini


SD3

ChatGPT最好,比较细腻,其次是Gemini ,SD 稍微差一些,SD的好处是可以私有化部署,可以根据需要进行私有数据训练,SD 生成速度 2.1 it/s。

相关推荐
空白诗2 天前
CANN ops-nn 算子解读:Stable Diffusion 图像生成中的 Conv2D 卷积实现
深度学习·计算机视觉·stable diffusion
学易2 天前
第十五节.别人的工作流,如何使用和调试(上)?(2类必现报错/缺失节点/缺失模型/思路/实操/通用调试步骤)
人工智能·ai作画·stable diffusion·报错·comfyui·缺失节点
心疼你的一切2 天前
基于CANN仓库算力手把手实现Stable Diffusion图像生成(附完整代码+流程图)
数据仓库·深度学习·stable diffusion·aigc·流程图·cann
Niuguangshuo3 天前
DALL-E 3:如何通过重构“文本描述“革新图像生成
人工智能·深度学习·计算机视觉·stable diffusion·重构·transformer
Niuguangshuo3 天前
深入解析 Stable Diffusion XL(SDXL):改进潜在扩散模型,高分辨率合成突破
stable diffusion
Niuguangshuo3 天前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火3 天前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
迈火11 天前
Facerestore CF (Code Former):ComfyUI人脸修复的卓越解决方案
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
重启编程之路12 天前
Stable Diffusion 参数记录
stable diffusion
孤狼warrior15 天前
图像生成 Stable Diffusion模型架构介绍及使用代码 附数据集批量获取
人工智能·python·深度学习·stable diffusion·cnn·transformer·stablediffusion