tsp可视化python

随机生成点的坐标并依据点集生成距离矩阵,通过点的坐标实现可视化

c代码看我的这篇文章tsp动态规划递归解法c++

python 复制代码
from typing import List, Tuple
import matplotlib.pyplot as plt
from random import randint

N: int = 4
MAX: int = 0x7f7f7f7f

distances: List[List[int]] = [[0 for _ in range(N)] for _ in range(N)]
path: List[List[int]] = [[0 for _ in range(1 << (N - 1))] for _ in range(N)]
dp: List[List[int]] = [[0 for _ in range(1 << (N - 1))] for _ in range(N)]
points: List[Tuple[int, int ]]

def creatDistances():
    global distances, dp
    # for i in range(N):
    #     for j in range(N):
    #         if i == j:
    #             distances[i][j] = MAX
    #         else:
    #             temp = randint(1, 10)
    #             while temp == 0:
    #                 temp = randint(1, 10)
    #             distances[i][j] = temp
    # x=[[MAX, 3, 6, 7],
    #    [5, MAX, 2, 3],
    #    [6, 4, MAX, 2],
    #    [3, 7, 5, MAX]]
    # for i in range(N):
    #     for j in range(N):
    #         distances[i][j] = x[i][j]
    creatpoints()
    for i in range(N):
        dp[i][0] = distances[i][0]


def printDistances():
    global distances
    print("代价矩阵为:")
    for i in range(N):
        for j in range(N):
            if distances[i][j] == MAX:
                s = "INF"
                print(f"{s:<17}", end=" ")
            else:
                print(f"{distances[i][j]:<17}", end=" ")
        print()
    for i, point in enumerate(points):
        plt.text(*point, f'{i }', fontsize=12, ha='center', va='bottom')
    plt.scatter(*zip(*points))

def removeCity(j: int, k: int) -> int:
    return j - (1 << (k - 1))


def printPath(i: int, j: int) -> None:
    if j != 0:
        print(f"{i} -> ", end="")
        next_city = path[i][j]
        plt.plot((points[i][0],points[next_city][0]), (points[i][1],points[next_city][1]))
        printPath(next_city, removeCity(j, next_city))
    else:
        print(f"{i} -> {0}")
        plt.plot((points[i][0],0), (points[i][1],0))


def creatpoints() ->None:
    ldasc: int = 1
    hdasc: int = 10
    dapr: int = N - 1
    global points
    points = [(0,0)]+[(randint(ldasc, hdasc), randint(ldasc, hdasc)) for i in range(dapr)]
    for i in range(N):
        for j in range(i, N):
            if i == j:
                distances[i][j] = MAX
            else:
                distances[i][j] = distances[j][i] = ((points[i][0]-points[j][0])**2+(points[i][1]-points[j][1])**2)**.5
def drewpoints() ->None:
    global points



def TSP(v: int, s: int) -> int:
    global distances, dp, path
    if dp[v][s] != 0:
        return dp[v][s]
    min = MAX
    for k in range(1, N):
        if ((s >> (k - 1)) & 1) == 1:
            t = TSP(k, removeCity(s, k))
            if (t + distances[v][k]) < min:
                min = t + distances[v][k]
                path[v][s] = k
    dp[v][s] = min
    return min


if __name__ == "__main__":
    creatDistances()
    printDistances()
    print(f"最短距离为:{TSP(0, (1 << (N - 1)) - 1)}")
    print("最短路径为:")
    printPath(0, (1 << (N - 1)) - 1)
    print(points)
    plt.show()
相关推荐
糯米导航3 分钟前
Java毕业设计:WML信息查询与后端信息发布系统开发
java·开发语言·课程设计
MessiGo31 分钟前
Javascript 编程基础(5)面向对象 | 5.1、构造函数实例化对象
开发语言·javascript·原型模式
大霞上仙34 分钟前
nonlocal 与global关键字
开发语言·python
galaxy_strive40 分钟前
绘制饼图详细过程
开发语言·c++·qt
Mark_Aussie1 小时前
Flask-SQLAlchemy使用小结
python·flask
程序员阿龙1 小时前
【精选】计算机毕业设计Python Flask海口天气数据分析可视化系统 气象数据采集处理 天气趋势图表展示 数据可视化平台源码+论文+PPT+讲解
python·flask·课程设计·数据可视化系统·天气数据分析·海口气象数据·pandas 数据处理
ZHOU_WUYI1 小时前
Flask与Celery 项目应用(shared_task使用)
后端·python·flask
黑客老李1 小时前
JavaSec | SpringAOP 链学习分析
java·运维·服务器·开发语言·学习·apache·memcached
开开心心就好2 小时前
高效Excel合并拆分软件
开发语言·javascript·c#·ocr·排序算法·excel·最小二乘法
且慢.5892 小时前
Python_day47
python·深度学习·计算机视觉