自动驾驶域控制器nvidia环境搭建

nvidia安装ros和深度学习环境搭建步骤总结

#############todesk ################

sudo dpkg -i todesk_4.1.0_aarch64.deb

####################################

#############500g ##################

lsblk

/dev/nvme0n1

fdisk /dev/nvme0n1

n

p

enter

enter

sudo mkfs -t ext4 /dev/nvme0n1p1

sudo gedit /etc/fstab

/dev/nvme0n1p1 /media/rosbag ext4 defaults 0 0

####################################

sudo apt-get update

sudo apt-get install python3-pip

JetPack:5.0.2

jetson-stats

sudo -H pip3 install -U jetson-stats

jtop

sudo systemctl restart jtop.service

jetpack:

a. sudo apt update

b. sudo apt upgrade

c. sudo apt install nvidia-jetpack -y

查看版本:/etc/apt/sources.list.d/nvidia-l4t-apt-source.list 文件中

######################ubuntu20.04 ros noetic install############################

sudo sh -c '. /etc/lsb-release && echo "deb http://mirrors.ustc.edu.cn/ros/ubuntu/ $DISTRIB_CODENAME main" > /etc/apt/sources.list.d/ros-latest.list'

sudo apt-key adv --keyserver 'hkp://keyserver.ubuntu.com:80' --recv-key C1CF6E31E6BADE8868B172B4F42ED6FBAB17C654

sudo apt update

sudo apt install ros-noetic-desktop-full

sudo pip install rosdepc // sudo pip3 install rosdepc

sudo rosdepc init

rosdepc update

echo "source /opt/ros/noetic/setup.bash" >> ~/.bashrc

source ~/.bashrc

tf2_sensor_msgs:

sudo apt-get install ros-noetic-tf2-sensor-msgs

sudo apt install libqt5serialport5-dev libudev-dev

sudo apt-get install ros-noetic-geographic-msgs

vim ~/.bashrc:

source /opt/ros/noetic/setup.bash

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/ros/noetic/lib

ros-numpy:

sudo apt-get install ros-noetic-ros-numpy

catkin_make : catkin_make -DPYTHON_EXECUTABLE=/usr/bin/python3

catkin_make -DCMAKE_BUILD_TYPE=Release -DPYTHON_EXECUTABLE=/usr/bin/python3

cuda: /usr/local

a. CUDA 检查是否安装成功

nvcc -V

如果报错,需要把nvcc添加到环境变量。

vim ~/.bashrc

export LD_LIBRARY_PATH=/usr/local/cuda/lib64

export PATH=$PATH:/usr/local/cuda/bin

source ~/.bashrc

出现如下则表示安装正确:

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005-2022 NVIDIA Corporation

Built on Wed_May__4_00:02:26_PDT_2022

Cuda compilation tools, release 11.4, V11.4.239

Build cuda_11.4.r11.4/compiler.31294910_0

安装过程

conda:

root: sh Miniforge-pypy3-4.14.0-2-Linux-aarch64.sh

conda create -n py38 -y

sudo apt-get install libopenblas-base libopenmpi-dev libomp-dev

conda activate py38

pytorch:py38 ---------copy torch-1.11.0-cp38-cp38-linux_aarch64.whl from usb

pip3 install torch-1.11.0-cp38-cp38-linux_aarch64.whl

torchvision: -----------copy vision-0.12.0.zip from usb

cd torchvision

export BUILD_VERSION=0.12.0

python3 setup.py install --user

cd ../

pycuda:

nvidia@tegra-ubuntu:/$ python3 -m pip install 'pycuda<2021.1'

cupy:

pip install cupy # only good use for (base)root

if can not import cupy: pip uninstall numpy & pip install numpy==1.23.5

(py38)root: python3

import tensorrt

import torch

import pycuda

import cupy

(base)root: python3

import cupy

import numpy

import pycuda

import

untitled test:

(base)root@tegra-ubuntu: catkin_make -DPYTHON_EXECUTABLE=/usr/bin/python3

numpy:

pip uninstall numpy

pip install -U numpy==1.23.5

rviz:

frame: zvision_lidar1

protobuf 3.0.0 :

gmock-1.7.0

相关推荐
信雪神话31 分钟前
KnowVal(arXiv:2512.20299v1):知识图谱增强与价值引导的自动驾驶决策
人工智能·自动驾驶·知识图谱
audyxiao0011 小时前
自动驾驶论文分享|TrajVAE:无需强约束即可灵活生成高质量行车轨迹
人工智能·机器学习·自动驾驶·neurocomputing
智行众维6 小时前
数据驱动与AI融合——构建自动驾驶仿真测试新范式的实践
人工智能·测试工具·ai·自动驾驶·仿真测试·自动驾驶仿真测试·场景开发
阳洞洞6 小时前
什么是自动驾驶地图的物理层、逻辑层、拓扑层、经验层?
自动驾驶·高精地图
云和数据.ChenGuang7 小时前
MindIE推理引擎:赋能自动驾驶感知决策升级,突破复杂路况落地瓶颈
人工智能·机器学习·自动驾驶
智行众维7 小时前
从“测试泥潭”到“智能加速”:我们对自动驾驶仿真测试的新思考
数据库·自动驾驶·开发·技术·场景库·自动驾驶仿真测试·场景开发
拓端研究室7 小时前
2025智能汽车产业深度研究报告:L3自动驾驶、Robotaxi|附680+份报告PDF、数据、可视化模板汇总下载
华为·pdf·自动驾驶
m0_650108241 天前
WorldSplat:面向自动驾驶的 4D 场景生成与新颖视图合成框架
论文阅读·自动驾驶·高保真·时空一致性·4d驾驶场景合成·生成式与重建式融合·4d高斯