【记录】使用远程SSH配置d2l环境(同时适用于本地anaconda)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录


前言

记录一下如何利用使用命令行进行anaconda配置 d2l环境、pytorch并进行训练深度学习模型。


一、从创建新环境开始

如果是本地直接装一个 anaconda 软件就行,如果是像我样使用 SSH 远程连接服务器进行操作,建议服务器上安装一个 miniconda。conda中创建一个新环境的命令是:

bash 复制代码
conda  create  --name  env_name(你的环境名字) python=3.8 # 创建指定python版本

无脑y就是了

使用conda info --envs 可以查看环境,可以看到我们已经创建好一个名叫 d2l 的新环境了

使用conda actiavte d2l进入这个新环境中

二、使用步骤

1.安装pytorch

首先我们要查看一下我们显卡所支持的CUDA版本,在命令行输入nvidia-smi,然后图中画框的地方就可以看到我们显卡的CUDA支持版本,我这里这块 RTX 4090 最高支持 12.2 的 CUDA。

首先我们需要在torch官网中查看一下对应的torch版本。我选了中间的 CUDA 12.1 进行安装,将pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu121这行复制下来。

直接粘贴到命令行运行就行,然后就开始框框下载了。

安装完之后就会显示 successfully 巴拉巴拉:

以防万一,我们输入pip list检查一下是不是真的装上了:

2.安装 d2l 包

我这里是使用pip install d2l==0.17.6 -i https://pypi.mirrors.ustc.edu.cn/simple安装 0.17.6 版本的 d2l 包。

同理使用pip list检查一下,可以看到是安装成功的

同时推荐用pip install jupyter -i https://pypi.mirrors.ustc.edu.cn/simple安装一下jupyter notebook,毕竟mu神视频一直用得是jupyter,也挺好使。

3.安装其他包

还是使用pip install pack_name -i https://pypi.mirrors.ustc.edu.cn/simple的格式安装你的代码所需要的其他包

4.使用jupyter notebook

输入

bash 复制代码
jupytet notebook

或者是,其中这个root是我在远程服务器的容器名称

bash 复制代码
jupyter notebook --allow-root

进入jupyter界面之后就是这样:

相关推荐
_.Switch24 分钟前
Python 自动化运维持续优化与性能调优
运维·开发语言·python·缓存·自动化·运维开发
南猿北者28 分钟前
Docker Volume
运维·docker·容器
Ztiddler5 小时前
【Linux Shell命令-不定期更新】
linux·运维·服务器·ssh
小小不董5 小时前
Oracle OCP认证考试考点详解082系列16
linux·运维·服务器·数据库·oracle·dba
IPdodo全球网络5 小时前
如何利用静态住宅IP优化Facebook商城的网络稳定性与运营效率
运维·服务器
运维&陈同学6 小时前
【模块一】kubernetes容器编排进阶实战之k8s基础概念
运维·docker·云原生·容器·kubernetes·云计算
m0_519523107 小时前
Linux——简单认识vim、gcc以及make/Makefile
linux·运维·vim
mit6.8247 小时前
[Docker#4] 镜像仓库 | 部分常用命令
linux·运维·docker·容器·架构
zyp2468107 小时前
Linux之DNS服务器
linux·运维·服务器
wdxylb7 小时前
将C++搭建的简单HTTP服务器升级为 HTTPS 服务器
运维·服务器·https