本地GPT-window平台 搭建ChatGLM3-6B

一 ChatGLM-6B 介绍

ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,新一代开源模型 ChatGLM3-6B 已发布,拥有10B以下最强的基础模型,支持工具调用(Function Call)、代码执行(Code Interpreter)、Agent 任务等功能,结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。

二 在 window平台 搭建ChatGLM3-6B

1 在github下拉该项目代码:

1 下拉项目源代码:

https://github.com/THUDM/ChatGLM-6B

bash 复制代码
git clone https://github.com/THUDM/ChatGLM-6B
cd ChatGLM-6B

2 下载项目数据模型

国内可下载地址:魔搭社区

下载的模型数据保存位置:

如果保存在别的地方需要指定配置模型路径的系统变量,也可以直接修改以下代码,如下图:

2 环境安装

使用 pip 安装依赖:pip install -r requirements.txt

bash 复制代码
pip install -r requirements.txt

**注意:**项目没有有明确说支持什么平台,当安装依赖时会报错,因为有一个vllm是不支持windows平台的,所以安装依赖时要注释掉一个依赖 vllm,其作用是加速推理项目可以不用,该框架的官方网站明确只支持linux,如下图:

检查pytorch环境

python 复制代码
import torch


if __name__ == '__main__':
    # 检测cuda环境
    print(torch.__version__)
    print(torch.cuda.is_available())
    print(torch.version.cuda)

pytorch正常,cuda可用如下图:

如果这一步有问题,请查看之前的文章:https://blog.csdn.net/qyhua/article/details/136248165

3 启动项目

启动演示项目:

bash 复制代码
cd basic_demo
python web_demo_gradio.py

启动过程中,大概要有4G左右的空闲内存,如果内存不够启动失败,且没有任何提示,如下图:

测试成功如下图:

由于我的电脑配置低,3060的显卡只有12G显存,所以这里改了一下代码。

这里测试了一下,当量化参数设置成8 时GPU内存大概使用了8G多,当设置成4时,只用了4G多,如下图:

bash 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).quantize(8).cuda()

量化参数设置成8时的效果图,回复比4快。

量化参数设置成4时 ,系统本身用了1.5G,模型大概使用了4G多。如下图:

相关推荐
卖芒果的潇洒农民3 小时前
20260201 GPT VPC中的CIDR Block 概念
笔记·gpt
薛定谔的猫19824 小时前
二十、使用PyTorch和Hugging Face Transformers训练中文GPT-2模型的技术实践
人工智能·pytorch·gpt
向量引擎小橙3 天前
Google 帝国的绝地反击:Gemini 3 深度硬核测评——GPT-5 的噩梦来了吗?
开发语言·人工智能·gpt·深度学习·机器学习
原来是你~呀~3 天前
Kali GPT - 人工智能渗透测试助手Linux部署
linux·人工智能·gpt·网络安全·自动化渗透测试
康康的AI博客3 天前
2026 OpenAI技术全景:GPT-5.2领衔的AI革命与DMXAPI无缝替代方案
人工智能·gpt
范桂飓3 天前
Transformer 大模型架构深度解析(5)GPT 与 LLM 大语言模型技术解析
人工智能·gpt·语言模型·transformer
七夜zippoe3 天前
大模型低成本高性能演进 从GPT到DeepSeek的技术实战手记
人工智能·gpt·算法·架构·deepseek
独自归家的兔4 天前
实测拆解:Qwen3-Max-Thinking 到底能不能对标 GPT-5.2?
gpt
迈火4 天前
Facerestore CF (Code Former):ComfyUI人脸修复的卓越解决方案
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
百***78755 天前
Sora Video2深度解析:AI视频创作的效率革命与生态进化
java·人工智能·gpt