本地GPT-window平台 搭建ChatGLM3-6B

一 ChatGLM-6B 介绍

ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,新一代开源模型 ChatGLM3-6B 已发布,拥有10B以下最强的基础模型,支持工具调用(Function Call)、代码执行(Code Interpreter)、Agent 任务等功能,结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。

二 在 window平台 搭建ChatGLM3-6B

1 在github下拉该项目代码:

1 下拉项目源代码:

https://github.com/THUDM/ChatGLM-6B

bash 复制代码
git clone https://github.com/THUDM/ChatGLM-6B
cd ChatGLM-6B

2 下载项目数据模型

国内可下载地址:魔搭社区

下载的模型数据保存位置:

如果保存在别的地方需要指定配置模型路径的系统变量,也可以直接修改以下代码,如下图:

2 环境安装

使用 pip 安装依赖:pip install -r requirements.txt

bash 复制代码
pip install -r requirements.txt

**注意:**项目没有有明确说支持什么平台,当安装依赖时会报错,因为有一个vllm是不支持windows平台的,所以安装依赖时要注释掉一个依赖 vllm,其作用是加速推理项目可以不用,该框架的官方网站明确只支持linux,如下图:

检查pytorch环境

python 复制代码
import torch


if __name__ == '__main__':
    # 检测cuda环境
    print(torch.__version__)
    print(torch.cuda.is_available())
    print(torch.version.cuda)

pytorch正常,cuda可用如下图:

如果这一步有问题,请查看之前的文章:https://blog.csdn.net/qyhua/article/details/136248165

3 启动项目

启动演示项目:

bash 复制代码
cd basic_demo
python web_demo_gradio.py

启动过程中,大概要有4G左右的空闲内存,如果内存不够启动失败,且没有任何提示,如下图:

测试成功如下图:

由于我的电脑配置低,3060的显卡只有12G显存,所以这里改了一下代码。

这里测试了一下,当量化参数设置成8 时GPU内存大概使用了8G多,当设置成4时,只用了4G多,如下图:

bash 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).quantize(8).cuda()

量化参数设置成8时的效果图,回复比4快。

量化参数设置成4时 ,系统本身用了1.5G,模型大概使用了4G多。如下图:

相关推荐
未来智慧谷1 天前
大模型工业化元年:GPT-5开启通用AI新纪元,中国技术如何破局?
人工智能·gpt
樱花穿过千岛湖2 天前
第六章:Multi-Backend Configuration
人工智能·python·gpt·学习·ai
量子位2 天前
北大团队引领 3D 生成与对齐革新:OctGPT 打破扩散模型垄断
人工智能·gpt·aigc
web守墓人3 天前
【gpt生成-其二】以go语言为例,详细讲解 并发模型:线程/协程/ Actor 实现
java·gpt·golang
剑客的茶馆4 天前
GPT,Genini, Claude Llama, DeepSeek,Qwen,Grok,选对LLM大模型真的可以事半功倍!
gpt·llm·llama·选择大模型
web守墓人4 天前
【gpt生成-其一】以go语言为例,详细描述一下 :语法规范BNF/EBNF形式化描述
前端·gpt·golang
ai_大师5 天前
Cursor怎么使用,3分钟上手Cursor:比ChatGPT更懂需求,用聊天的方式写代码,GPT4、Claude 3.5等先进LLM辅助编程
gpt·claude·cursor·apikey·中转apikey·免费apikey
移动安全星球5 天前
从零开始:CherryStudio 打造专属本地 AI 知识库全攻略
人工智能·gpt·claude·本地知识库·deepseek
bingbingyihao5 天前
GPT对话UI--通义千问API
gpt·ui
陈奕昆6 天前
论文降重GPT指令-实侧有效从98%降低到8%
人工智能·gpt·论文·降重