本地GPT-window平台 搭建ChatGLM3-6B

一 ChatGLM-6B 介绍

ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,新一代开源模型 ChatGLM3-6B 已发布,拥有10B以下最强的基础模型,支持工具调用(Function Call)、代码执行(Code Interpreter)、Agent 任务等功能,结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。

二 在 window平台 搭建ChatGLM3-6B

1 在github下拉该项目代码:

1 下拉项目源代码:

https://github.com/THUDM/ChatGLM-6B

bash 复制代码
git clone https://github.com/THUDM/ChatGLM-6B
cd ChatGLM-6B

2 下载项目数据模型

国内可下载地址:魔搭社区

下载的模型数据保存位置:

如果保存在别的地方需要指定配置模型路径的系统变量,也可以直接修改以下代码,如下图:

2 环境安装

使用 pip 安装依赖:pip install -r requirements.txt

bash 复制代码
pip install -r requirements.txt

**注意:**项目没有有明确说支持什么平台,当安装依赖时会报错,因为有一个vllm是不支持windows平台的,所以安装依赖时要注释掉一个依赖 vllm,其作用是加速推理项目可以不用,该框架的官方网站明确只支持linux,如下图:

检查pytorch环境

python 复制代码
import torch


if __name__ == '__main__':
    # 检测cuda环境
    print(torch.__version__)
    print(torch.cuda.is_available())
    print(torch.version.cuda)

pytorch正常,cuda可用如下图:

如果这一步有问题,请查看之前的文章:https://blog.csdn.net/qyhua/article/details/136248165

3 启动项目

启动演示项目:

bash 复制代码
cd basic_demo
python web_demo_gradio.py

启动过程中,大概要有4G左右的空闲内存,如果内存不够启动失败,且没有任何提示,如下图:

测试成功如下图:

由于我的电脑配置低,3060的显卡只有12G显存,所以这里改了一下代码。

这里测试了一下,当量化参数设置成8 时GPU内存大概使用了8G多,当设置成4时,只用了4G多,如下图:

bash 复制代码
model = AutoModel.from_pretrained(model_dir, trust_remote_code=True).quantize(8).cuda()

量化参数设置成8时的效果图,回复比4快。

量化参数设置成4时 ,系统本身用了1.5G,模型大概使用了4G多。如下图:

相关推荐
极客BIM工作室13 小时前
从Transformer的Encoder与Decoder,到BERT和GPT的独立王国
gpt·bert·transformer
倔强的石头1065 天前
AiOnly大模型深度测评:调用GPT-5 API+RAG知识库,快速构建智能客服机器人
人工智能·gpt·机器人·aionly
boring_1115 天前
KubeFlow
gpt
智算菩萨5 天前
2025年通用大语言模型前沿进展评测:GPT-5.1、Claude 4.5、文心一言5.0 等全面解析
gpt·语言模型·文心一言
智慧地球(AI·Earth)6 天前
GPT-5.1发布!你的AI更暖更智能!
人工智能·gpt·神经网络·aigc·agi
盼小辉丶7 天前
PyTorch实战(10)——从零开始实现GPT模型
人工智能·pytorch·gpt·深度学习
Constantine378 天前
GPT-5.1已上线!亲测国内可用,保姆级使用教程
gpt
FreeBuf_8 天前
攻击者利用自定义GPT的SSRF漏洞窃取ChatGPT机密数据
gpt·chatgpt
yaocheng的ai分身8 天前
【转载】 OpenAI 推出 GPT-5.1:面向开发者的智能模型
gpt·chatgpt
AI探知-阿薇9 天前
GPT-5.1发布:深入解读与 GPT-5、GPT-4o 在性能与安全基准上的全面对比
gpt·安全