kafka集成spark

1.新建Scala项目

具体教程可见在idea中创建Scala项目教程-CSDN博客

1.1右键项目名-添加框架支持-勾选scala

1.2main目录下新建scala目录-右键Scala目录-将目录标记为-勾选源代码根目录

1.3创建包com.ljr.spark

1.4引入依赖(pox.xml)

bash 复制代码
<dependencies>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>
           <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.12</artifactId>
            <version>3.0.0</version>
        </dependency>
    </dependencies>

1.5把spark conf/目录下的log4j.properties 复制到项目的resources目录

2.集成spark生产者

新建SparkKafkaProducer (注意选择的是object而不是class)

Scala 复制代码
package com.ljr.spark
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import org.apache.kafka.common.serialization.StringSerializer

import java.util.Properties

object SparkKafkaProducer {

  def main(args: Array[String]): Unit = {
    //1 属性配置
    val pros = new Properties()
    pros.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"node1:9092,node2:9092")
    pros.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,classOf[StringSerializer])
    pros.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,classOf[StringSerializer])

    //2 创建生产者
    val producer = new KafkaProducer[String, String](pros)

    //3 发送数据
    for (i <- 1 to 5) {
      producer.send(new ProducerRecord[String,String]("customers","Lili" + i))
    }
    //4 关闭资源
    producer.close()
  }
}

运行,开启Kafka 消费者消费数据

kafka-console-consumer.sh --bootstrap-server node1:9092 --topic customers

能接收到信息,可见spark作为生产者集成Kafka成功

3.集成spark消费者

bash 复制代码
package com.ljr.spark

import org.apache.kafka.clients.consumer.ConsumerConfig
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}


object SparkKafkaConsumer {
      def main(args: Array[String]): Unit = {
       //1 初始化上下文环境
       val conf = new SparkConf().setMaster("local[*]").setAppName("spark-kafka")
        val sc = new StreamingContext(conf, Seconds(3))

        //2 消费数据
        val kafkapara = Map[String, Object](
          ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG->"node1:9092,node2:9092",
          ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG->classOf[StringDeserializer],
          ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG->classOf[StringDeserializer],
          ConsumerConfig.GROUP_ID_CONFIG->"KFK-SP"
        )
        val kafkaDstream = KafkaUtils.createDirectStream(sc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](Set("customers"), kafkapara))
        val valueDstream = kafkaDstream.map(record => record.value())
        valueDstream.print()
        //3 执行代码并阻塞
          sc.start()
        sc.awaitTermination()

      }
}

运行,

开启Kafka 生产者生产数据

kafka-console-producer.sh.sh --bootstrap-server node1:9092 --topic customers

控制台可以消费到数据,可见spark作为消费者集成Kafka成功。

相关推荐
武子康2 小时前
大数据-77 Kafka 延时队列与消息重试机制全解析:从原理到实战落地 Java
大数据·后端·kafka
心月狐的流火号2 小时前
分布式锁技术详解与Go语言实现
分布式·微服务·go
秋已杰爱5 小时前
Redis分布式锁
数据库·redis·分布式
编啊编程啊程9 小时前
JUC之AQS
java·开发语言·jvm·c++·kafka
努力买辣条10 小时前
基于 Docker 的高可用 WordPress 集群部署:分布式 Nginx + Keepalived、MySQL 主从复制与 ProxySQL 读写分离
分布式·nginx·docker
计算机编程小咖13 小时前
《基于大数据的农产品交易数据分析与可视化系统》选题不当,毕业答辩可能直接挂科
java·大数据·hadoop·python·数据挖掘·数据分析·spark
tan77º17 小时前
【Linux网络编程】分布式Json-RPC框架 - 项目设计
linux·服务器·网络·分布式·网络协议·rpc·json
有数的编程笔记20 小时前
Hive/Spark窗口函数
spark·apache hive
武子康20 小时前
大数据-76 Kafka 从发送到消费:Kafka 消息丢失/重复问题深入剖析与最佳实践
大数据·后端·kafka
鼠鼠我捏,要死了捏21 小时前
Kafka Streams vs Apache Flink vs Apache Storm: 实时流处理方案对比与选型建议
kafka·apache flink·apache storm