1.新建Scala项目
具体教程可见在idea中创建Scala项目教程-CSDN博客
1.1右键项目名-添加框架支持-勾选scala
1.2main目录下新建scala目录-右键Scala目录-将目录标记为-勾选源代码根目录
1.3创建包com.ljr.spark
1.4引入依赖(pox.xml)
bash
<dependencies>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
<version>3.0.0</version>
</dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.12</artifactId>
<version>3.0.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-streaming_2.12</artifactId>
<version>3.0.0</version>
</dependency>
</dependencies>
1.5把spark conf/目录下的log4j.properties 复制到项目的resources目录
2.集成spark生产者
新建SparkKafkaProducer (注意选择的是object而不是class)
Scala
package com.ljr.spark
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import org.apache.kafka.common.serialization.StringSerializer
import java.util.Properties
object SparkKafkaProducer {
def main(args: Array[String]): Unit = {
//1 属性配置
val pros = new Properties()
pros.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"node1:9092,node2:9092")
pros.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,classOf[StringSerializer])
pros.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,classOf[StringSerializer])
//2 创建生产者
val producer = new KafkaProducer[String, String](pros)
//3 发送数据
for (i <- 1 to 5) {
producer.send(new ProducerRecord[String,String]("customers","Lili" + i))
}
//4 关闭资源
producer.close()
}
}
运行,开启Kafka 消费者消费数据
kafka-console-consumer.sh --bootstrap-server node1:9092 --topic customers
能接收到信息,可见spark作为生产者集成Kafka成功
3.集成spark消费者
bash
package com.ljr.spark
import org.apache.kafka.clients.consumer.ConsumerConfig
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
object SparkKafkaConsumer {
def main(args: Array[String]): Unit = {
//1 初始化上下文环境
val conf = new SparkConf().setMaster("local[*]").setAppName("spark-kafka")
val sc = new StreamingContext(conf, Seconds(3))
//2 消费数据
val kafkapara = Map[String, Object](
ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG->"node1:9092,node2:9092",
ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG->classOf[StringDeserializer],
ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG->classOf[StringDeserializer],
ConsumerConfig.GROUP_ID_CONFIG->"KFK-SP"
)
val kafkaDstream = KafkaUtils.createDirectStream(sc, LocationStrategies.PreferConsistent, ConsumerStrategies.Subscribe[String, String](Set("customers"), kafkapara))
val valueDstream = kafkaDstream.map(record => record.value())
valueDstream.print()
//3 执行代码并阻塞
sc.start()
sc.awaitTermination()
}
}
运行,
开启Kafka 生产者生产数据
kafka-console-producer.sh.sh --bootstrap-server node1:9092 --topic customers
控制台可以消费到数据,可见spark作为消费者集成Kafka成功。