证明 几何分布 的期望和方差

几何分布

几何分布(Geometric Distribution)描述了在进行一系列独立的伯努利试验时,第一次成功所需的试验次数。假设每次试验成功的概率为 ( p ),则几何分布的概率质量函数(PMF)为:

P ( X = k ) = ( 1 − p ) k − 1 p , k = 1 , 2 , 3 , ... P(X = k) = (1 - p)^{k-1} p, \quad k = 1, 2, 3, \ldots P(X=k)=(1−p)k−1p,k=1,2,3,...

其中,随机变量 ( X ) 表示第一次成功所需的试验次数。

期望值

期望值(Expectation)表示随机变量的平均值。对于几何分布 ( X ),期望值 ( \mathbb{E}(X) ) 定义为:

E ( X ) = ∑ k = 1 ∞ k ⋅ P ( X = k ) \mathbb{E}(X) = \sum_{k=1}^{\infty} k \cdot P(X = k) E(X)=k=1∑∞k⋅P(X=k)

代入几何分布的概率质量函数:

E ( X ) = ∑ k = 1 ∞ k ⋅ ( 1 − p ) k − 1 p \mathbb{E}(X) = \sum_{k=1}^{\infty} k \cdot (1 - p)^{k-1} p E(X)=k=1∑∞k⋅(1−p)k−1p

我们可以将 ( p ) 提取出来:

E ( X ) = p ∑ k = 1 ∞ k ⋅ ( 1 − p ) k − 1 \mathbb{E}(X) = p \sum_{k=1}^{\infty} k \cdot (1 - p)^{k-1} E(X)=pk=1∑∞k⋅(1−p)k−1

为了计算这个和,我们使用以下求和公式:

∑ k = 1 ∞ k x k − 1 = 1 ( 1 − x ) 2 for ∣ x ∣ < 1 \sum_{k=1}^{\infty} k x^{k-1} = \frac{1}{(1 - x)^2} \quad \text{for} \quad |x| < 1 k=1∑∞kxk−1=(1−x)21for∣x∣<1

在这里,令 ( x = 1 - p ),因此有:

∑ k = 1 ∞ k ⋅ ( 1 − p ) k − 1 = 1 p 2 \sum_{k=1}^{\infty} k \cdot (1 - p)^{k-1} = \frac{1}{p^2} k=1∑∞k⋅(1−p)k−1=p21

代入上面的结果:

E ( X ) = p ⋅ 1 p 2 = 1 p \mathbb{E}(X) = p \cdot \frac{1}{p^2} = \frac{1}{p} E(X)=p⋅p21=p1

方差

方差(Variance)表示随机变量与其期望值之间的离散程度,记作 ( \text{Var}(X) )。方差的定义为:

Var ( X ) = E [ ( X − E ( X ) ) 2 ] = E ( X 2 ) − ( E ( X ) ) 2 \text{Var}(X) = \mathbb{E}[(X - \mathbb{E}(X))^2] = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 Var(X)=E[(X−E(X))2]=E(X2)−(E(X))2

首先,我们计算 ( \mathbb{E}(X^2) )。利用几何级数求和,我们有:

E ( X 2 ) = ∑ k = 1 ∞ k 2 ⋅ ( 1 − p ) k − 1 p \mathbb{E}(X^2) = \sum_{k=1}^{\infty} k^2 \cdot (1 - p)^{k-1} p E(X2)=k=1∑∞k2⋅(1−p)k−1p

我们使用以下求和公式:

∑ k = 1 ∞ k 2 x k − 1 = 1 + x ( 1 − x ) 3 for ∣ x ∣ < 1 \sum_{k=1}^{\infty} k^2 x^{k-1} = \frac{1 + x}{(1 - x)^3} \quad \text{for} \quad |x| < 1 k=1∑∞k2xk−1=(1−x)31+xfor∣x∣<1

令 ( x = 1 - p ),因此有:

∑ k = 1 ∞ k 2 ⋅ ( 1 − p ) k − 1 = 1 + ( 1 − p ) ( 1 − ( 1 − p ) ) 3 = 2 − p p 3 \sum_{k=1}^{\infty} k^2 \cdot (1 - p)^{k-1} = \frac{1 + (1 - p)}{(1 - (1 - p))^3} = \frac{2 - p}{p^3} k=1∑∞k2⋅(1−p)k−1=(1−(1−p))31+(1−p)=p32−p

因此,

E ( X 2 ) = p ⋅ 2 − p p 3 = 2 − p p 2 \mathbb{E}(X^2) = p \cdot \frac{2 - p}{p^3} = \frac{2 - p}{p^2} E(X2)=p⋅p32−p=p22−p

现在我们可以计算方差:

Var ( X ) = E ( X 2 ) − ( E ( X ) ) 2 = 2 − p p 2 − ( 1 p ) 2 = 2 − p p 2 − 1 p 2 = 2 − p − 1 p 2 = 1 − p p 2 \text{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \frac{2 - p}{p^2} - \left(\frac{1}{p}\right)^2 = \frac{2 - p}{p^2} - \frac{1}{p^2} = \frac{2 - p - 1}{p^2} = \frac{1 - p}{p^2} Var(X)=E(X2)−(E(X))2=p22−p−(p1)2=p22−p−p21=p22−p−1=p21−p

结论

对于几何分布 ( X ),其期望值和方差分别为:

E ( X ) = 1 p \mathbb{E}(X) = \frac{1}{p} E(X)=p1

Var ( X ) = 1 − p p 2 \text{Var}(X) = \frac{1 - p}{p^2} Var(X)=p21−p

这些结果表明,在进行一系列独立的伯努利试验中,第一次成功所需的试验次数的平均值是E(x),而离散程度由Var(x)决定。

相关推荐
张祥64228890415 小时前
数理统计基础一
人工智能·机器学习·概率论
Zhibang Yue17 小时前
非参数统计基础1——Pearson检验
统计·概率论·数理统计
ballball~~2 天前
正态(高斯)分布(Gaussian distribution)
算法·概率论
AI科技星2 天前
引力场与磁场的几何统一:磁矢势方程的第一性原理推导、验证与诠释
数据结构·人工智能·经验分享·线性代数·算法·计算机视觉·概率论
Niuguangshuo3 天前
高斯分布的加权和 vs. 加权混合
概率论
Niuguangshuo3 天前
随机变量及其分布:从离散到连续,深入理解概率模型的基础
概率论
Z_Jiang3 天前
金融投资 的 小游戏:海边躺平
经验分享·金融·概率论·程序员创富
liliangcsdn5 天前
全方差公式在DDIM中的应用示例
概率论
helloworld也报错?5 天前
深度强化学习(1)——基础知识(名词解释,概率论基础,蒙特卡洛采样,马尔可夫决策过程)
人工智能·深度学习·机器学习·概率论
liliangcsdn6 天前
全期望公式在DDIM中的应用实例
算法·机器学习·概率论