证明 几何分布 的期望和方差

几何分布

几何分布(Geometric Distribution)描述了在进行一系列独立的伯努利试验时,第一次成功所需的试验次数。假设每次试验成功的概率为 ( p ),则几何分布的概率质量函数(PMF)为:

P ( X = k ) = ( 1 − p ) k − 1 p , k = 1 , 2 , 3 , ... P(X = k) = (1 - p)^{k-1} p, \quad k = 1, 2, 3, \ldots P(X=k)=(1−p)k−1p,k=1,2,3,...

其中,随机变量 ( X ) 表示第一次成功所需的试验次数。

期望值

期望值(Expectation)表示随机变量的平均值。对于几何分布 ( X ),期望值 ( \mathbb{E}(X) ) 定义为:

E ( X ) = ∑ k = 1 ∞ k ⋅ P ( X = k ) \mathbb{E}(X) = \sum_{k=1}^{\infty} k \cdot P(X = k) E(X)=k=1∑∞k⋅P(X=k)

代入几何分布的概率质量函数:

E ( X ) = ∑ k = 1 ∞ k ⋅ ( 1 − p ) k − 1 p \mathbb{E}(X) = \sum_{k=1}^{\infty} k \cdot (1 - p)^{k-1} p E(X)=k=1∑∞k⋅(1−p)k−1p

我们可以将 ( p ) 提取出来:

E ( X ) = p ∑ k = 1 ∞ k ⋅ ( 1 − p ) k − 1 \mathbb{E}(X) = p \sum_{k=1}^{\infty} k \cdot (1 - p)^{k-1} E(X)=pk=1∑∞k⋅(1−p)k−1

为了计算这个和,我们使用以下求和公式:

∑ k = 1 ∞ k x k − 1 = 1 ( 1 − x ) 2 for ∣ x ∣ < 1 \sum_{k=1}^{\infty} k x^{k-1} = \frac{1}{(1 - x)^2} \quad \text{for} \quad |x| < 1 k=1∑∞kxk−1=(1−x)21for∣x∣<1

在这里,令 ( x = 1 - p ),因此有:

∑ k = 1 ∞ k ⋅ ( 1 − p ) k − 1 = 1 p 2 \sum_{k=1}^{\infty} k \cdot (1 - p)^{k-1} = \frac{1}{p^2} k=1∑∞k⋅(1−p)k−1=p21

代入上面的结果:

E ( X ) = p ⋅ 1 p 2 = 1 p \mathbb{E}(X) = p \cdot \frac{1}{p^2} = \frac{1}{p} E(X)=p⋅p21=p1

方差

方差(Variance)表示随机变量与其期望值之间的离散程度,记作 ( \text{Var}(X) )。方差的定义为:

Var ( X ) = E [ ( X − E ( X ) ) 2 ] = E ( X 2 ) − ( E ( X ) ) 2 \text{Var}(X) = \mathbb{E}[(X - \mathbb{E}(X))^2] = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 Var(X)=E[(X−E(X))2]=E(X2)−(E(X))2

首先,我们计算 ( \mathbb{E}(X^2) )。利用几何级数求和,我们有:

E ( X 2 ) = ∑ k = 1 ∞ k 2 ⋅ ( 1 − p ) k − 1 p \mathbb{E}(X^2) = \sum_{k=1}^{\infty} k^2 \cdot (1 - p)^{k-1} p E(X2)=k=1∑∞k2⋅(1−p)k−1p

我们使用以下求和公式:

∑ k = 1 ∞ k 2 x k − 1 = 1 + x ( 1 − x ) 3 for ∣ x ∣ < 1 \sum_{k=1}^{\infty} k^2 x^{k-1} = \frac{1 + x}{(1 - x)^3} \quad \text{for} \quad |x| < 1 k=1∑∞k2xk−1=(1−x)31+xfor∣x∣<1

令 ( x = 1 - p ),因此有:

∑ k = 1 ∞ k 2 ⋅ ( 1 − p ) k − 1 = 1 + ( 1 − p ) ( 1 − ( 1 − p ) ) 3 = 2 − p p 3 \sum_{k=1}^{\infty} k^2 \cdot (1 - p)^{k-1} = \frac{1 + (1 - p)}{(1 - (1 - p))^3} = \frac{2 - p}{p^3} k=1∑∞k2⋅(1−p)k−1=(1−(1−p))31+(1−p)=p32−p

因此,

E ( X 2 ) = p ⋅ 2 − p p 3 = 2 − p p 2 \mathbb{E}(X^2) = p \cdot \frac{2 - p}{p^3} = \frac{2 - p}{p^2} E(X2)=p⋅p32−p=p22−p

现在我们可以计算方差:

Var ( X ) = E ( X 2 ) − ( E ( X ) ) 2 = 2 − p p 2 − ( 1 p ) 2 = 2 − p p 2 − 1 p 2 = 2 − p − 1 p 2 = 1 − p p 2 \text{Var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \frac{2 - p}{p^2} - \left(\frac{1}{p}\right)^2 = \frac{2 - p}{p^2} - \frac{1}{p^2} = \frac{2 - p - 1}{p^2} = \frac{1 - p}{p^2} Var(X)=E(X2)−(E(X))2=p22−p−(p1)2=p22−p−p21=p22−p−1=p21−p

结论

对于几何分布 ( X ),其期望值和方差分别为:

E ( X ) = 1 p \mathbb{E}(X) = \frac{1}{p} E(X)=p1

Var ( X ) = 1 − p p 2 \text{Var}(X) = \frac{1 - p}{p^2} Var(X)=p21−p

这些结果表明,在进行一系列独立的伯努利试验中,第一次成功所需的试验次数的平均值是E(x),而离散程度由Var(x)决定。

相关推荐
培风图南以星河揽胜20 小时前
Java实习模拟面试|离散数学|概率论|金融英语|数据库实战|职业规划|期末冲刺|今日本科计科要闻速递:技术分享与学习指南
java·面试·概率论
雪不下3 天前
计算机中的数学:概率(3)
概率论
sensen_kiss5 天前
INT305 Machine Learning 机器学习 Pt.9 Probabilistic Models(概率模型)
人工智能·机器学习·概率论
AI大模型学徒5 天前
NLP基础(八)_马尔可夫模型
算法·机器学习·自然语言处理·nlp·概率论·马尔可夫模型
谅望者6 天前
数据分析笔记08:Python编程基础-数据类型与变量
数据库·笔记·python·数据分析·概率论
醒过来摸鱼9 天前
9.11 傅里叶变换家族介绍
线性代数·算法·概率论
ChoSeitaku10 天前
线代强化NO7|秩|矩阵的秩|向量组的秩|极大线性无关组|公式
线性代数·矩阵·概率论
Cathy Bryant11 天前
信息论(五):联合熵与条件熵
人工智能·笔记·机器学习·数学建模·概率论
谅望者11 天前
数据分析笔记03:概率分布理论
笔记·数据分析·概率论
醒过来摸鱼12 天前
多重组合问题与矩阵配额问题
线性代数·矩阵·概率论