生产环境下部署微调的10条戒律

关于大模型微调部署,openPile,Kyle Corbitt的《Ten Commandments to Deploy Fine-Tuned Models inProd》:https://docs.google.com/presentation/d/1lRrTEDOw7160sU_-PL5bONLOPq_7E8alewvcJ01BCE/edit#slide=id.g2721fb6713e_0_44

1、第一戒律:不可微调,直接使用提示语(prompting),选择性地使用少量示例或检索增强生成(RAG):

2、**第二戒律:应当编写提示语,并创建一个基准,证明任务是可行的。**如果提示语有效,微调有90%的可能性会改善模型表现:如果无效,微调只有25%的可能性有效

3、第三戒律:应当审查你的数据,仔细检查和清洗数据,以确保数据的准确性和一致性

4、第四戒律:应当使用真实数据,使用真实的业务数据进行模型训练和测试,并确保数据集在平均水平上是正确的,即使有些错误数据也是可以接受的

5、第五戒律:应当保留一个测试集,并保留一部分数据作为测试集,用于评估模型的实际性能。

6、第六戒律:应当选择合适的模型,根据具体任务选择最适合的模型,以实现最佳性能和资源效率

7、第七戒律:应当编写快速评估,编写快速评估工具,用于在短时间内评估模型性能

8、第八戒律:亦应当编写慢速评估,编写详细的评估工具,以全面测试模型的各方面性能

9、第九戒律:不可"发射后不管",部署模型后,持续监控和改进模型,避免一次性部署后不再维护

10、**第十戒律:不可过于严肃对待这些戒律。**保持灵活性,根据实际情况调整和优化模型开发和部署流程

相关推荐
竣雄2 小时前
计算机视觉:原理、技术与未来展望
人工智能·计算机视觉
救救孩子把2 小时前
44-机器学习与大模型开发数学教程-4-6 大数定律与中心极限定理
人工智能·机器学习
Rabbit_QL2 小时前
【LLM评价指标】从概率到直觉:理解语言模型的困惑度
人工智能·语言模型·自然语言处理
呆萌很2 小时前
HSV颜色空间过滤
人工智能
roman_日积跬步-终至千里3 小时前
【人工智能导论】02-搜索-高级搜索策略探索篇:从约束满足到博弈搜索
java·前端·人工智能
FL16238631293 小时前
[C#][winform]基于yolov11的淡水鱼种类检测识别系统C#源码+onnx模型+评估指标曲线+精美GUI界面
人工智能·yolo·目标跟踪
爱笑的眼睛113 小时前
从 Seq2Seq 到 Transformer++:深度解构与自构建现代机器翻译核心组件
java·人工智能·python·ai
小润nature3 小时前
AI时代对编程技能学习方式的根本变化(1)
人工智能
小智RE0-走在路上4 小时前
Python学习笔记(8) --函数的多返回值,不同传参,匿名函数
笔记·python·学习
摇滚侠4 小时前
Redis 零基础到进阶,Redis 哨兵监控,笔记63-73
数据库·redis·笔记