生产环境下部署微调的10条戒律

关于大模型微调部署,openPile,Kyle Corbitt的《Ten Commandments to Deploy Fine-Tuned Models inProd》:https://docs.google.com/presentation/d/1lRrTEDOw7160sU_-PL5bONLOPq_7E8alewvcJ01BCE/edit#slide=id.g2721fb6713e_0_44

1、第一戒律:不可微调,直接使用提示语(prompting),选择性地使用少量示例或检索增强生成(RAG):

2、**第二戒律:应当编写提示语,并创建一个基准,证明任务是可行的。**如果提示语有效,微调有90%的可能性会改善模型表现:如果无效,微调只有25%的可能性有效

3、第三戒律:应当审查你的数据,仔细检查和清洗数据,以确保数据的准确性和一致性

4、第四戒律:应当使用真实数据,使用真实的业务数据进行模型训练和测试,并确保数据集在平均水平上是正确的,即使有些错误数据也是可以接受的

5、第五戒律:应当保留一个测试集,并保留一部分数据作为测试集,用于评估模型的实际性能。

6、第六戒律:应当选择合适的模型,根据具体任务选择最适合的模型,以实现最佳性能和资源效率

7、第七戒律:应当编写快速评估,编写快速评估工具,用于在短时间内评估模型性能

8、第八戒律:亦应当编写慢速评估,编写详细的评估工具,以全面测试模型的各方面性能

9、第九戒律:不可"发射后不管",部署模型后,持续监控和改进模型,避免一次性部署后不再维护

10、**第十戒律:不可过于严肃对待这些戒律。**保持灵活性,根据实际情况调整和优化模型开发和部署流程

相关推荐
HuggingFace1 小时前
Hugging Face 开源机器人 Reachy Mini 开启预定
人工智能
企企通采购云平台2 小时前
「天元宠物」×企企通,加速数智化升级,“链”接萌宠消费新蓝海
大数据·人工智能·宠物
超级小忍2 小时前
Spring AI ETL Pipeline使用指南
人工智能·spring
张较瘦_2 小时前
[论文阅读] 人工智能 | 读懂Meta-Fair:让LLM摆脱偏见的自动化测试新方法
论文阅读·人工智能
巴伦是只猫3 小时前
【机器学习笔记 Ⅲ】4 特征选择
人工智能·笔记·机器学习
好心的小明3 小时前
【王树森推荐系统】召回11:地理位置召回、作者召回、缓存召回
人工智能·缓存·推荐系统·推荐算法
不爱说话的采儿3 小时前
UE5详细保姆教程(第四章)
笔记·ue5·游戏引擎·课程设计
weixin_418813873 小时前
Python-可视化学习笔记
笔记·python·学习
lishaoan773 小时前
使用tensorflow的线性回归的例子(十二)
人工智能·tensorflow·线性回归·戴明回归
Vic101013 小时前
Java 开发笔记:多线程查询逻辑的抽象与优化
java·服务器·笔记