16.5 DarLoc:基于深度学习和数据特征增强的鲁棒室内磁定位

文献来源:

Wang Q, Jia J, Deng Y, et al. DarLoc: Deep learning and data-feature augmentation based robust magnetic indoor localization[J]. Expert Systems with Applications, 2024, 244: 122921.

摘要:

由于地磁场的普遍性,基于磁场的室内定位方法受到了广泛的关注,并且不需要额外的基础设施。然而,现有方法仍然面临着设备类型、行人持有姿态和移动速度等因素造成的异质性问题。为了解决这个问题,本文提出了一种新的基于深度学习和数据特征增强的磁性定位框架(DarLoc)。首先,采用方向不敏感的磁信号提取方法去除序列中的直流分量,以消除不同保持姿态和不同移动设备带来的影响;其次,提出了新颖的数据增强和特征增强方法来提取速度信息的特征,从而解决了不同移动速度带来的多尺度序列问题;最后,提出了一种深度多尺度时空学习模型,用于同时提取增强序列的空间和时间特征,并对具有不同移动速度和姿态的人进行鲁棒定位。在长达14个月的时间里,研究人员对189名志愿者使用4种不同的移动设备和多种移动速度进行了广泛的实验,以评估DarLoc的性能。实验结果表明:(1)DarLoc算法在恒定和可变移动速度场景下的平均定位精度分别为0.47 m和0.56 m;(2)与现有定位方法相比,DarLoc的定位精度分别提高了约41%和60%。

相关推荐
haiyu_y3 分钟前
Day 27 通用机器学习流水线
人工智能·python·机器学习
青稞社区.4 分钟前
Fast-dLLM v2:高效训练推理的块扩散大语言模型框架
人工智能·语言模型·自然语言处理
wshzd4 分钟前
LLM之Agent(三十八)|AI Agents(七):Multi-Agent架构
人工智能·架构
Yuner200010 分钟前
Python深度学习:从入门到精通
人工智能·深度学习·机器学习
Silence_Jy11 分钟前
deepseek-R1技术报告解析
python·深度学习·transformer
LaughingZhu24 分钟前
Product Hunt 每日热榜 | 2025-12-06
大数据·人工智能·经验分享·搜索引擎·产品运营
沫儿笙32 分钟前
川崎焊接机器人保护气体省气
人工智能·机器人
测试人社区—527236 分钟前
你的单元测试真的“单元”吗?
前端·人工智能·git·测试工具·单元测试·自动化·log4j
风哥在风中37 分钟前
AI视频常见的逻辑漏洞和瑕疵
人工智能·ai视频·逻辑漏洞·逻辑瑕疵
数据门徒43 分钟前
《人工智能现代方法(第4版)》 第10章 知识表示 学习笔记
人工智能·笔记·学习