16.5 DarLoc:基于深度学习和数据特征增强的鲁棒室内磁定位

文献来源:

Wang Q, Jia J, Deng Y, et al. DarLoc: Deep learning and data-feature augmentation based robust magnetic indoor localization[J]. Expert Systems with Applications, 2024, 244: 122921.

摘要:

由于地磁场的普遍性,基于磁场的室内定位方法受到了广泛的关注,并且不需要额外的基础设施。然而,现有方法仍然面临着设备类型、行人持有姿态和移动速度等因素造成的异质性问题。为了解决这个问题,本文提出了一种新的基于深度学习和数据特征增强的磁性定位框架(DarLoc)。首先,采用方向不敏感的磁信号提取方法去除序列中的直流分量,以消除不同保持姿态和不同移动设备带来的影响;其次,提出了新颖的数据增强和特征增强方法来提取速度信息的特征,从而解决了不同移动速度带来的多尺度序列问题;最后,提出了一种深度多尺度时空学习模型,用于同时提取增强序列的空间和时间特征,并对具有不同移动速度和姿态的人进行鲁棒定位。在长达14个月的时间里,研究人员对189名志愿者使用4种不同的移动设备和多种移动速度进行了广泛的实验,以评估DarLoc的性能。实验结果表明:(1)DarLoc算法在恒定和可变移动速度场景下的平均定位精度分别为0.47 m和0.56 m;(2)与现有定位方法相比,DarLoc的定位精度分别提高了约41%和60%。

相关推荐
格林威9 小时前
多相机拼接:消除重叠区域的6个核心方法,附OpenCV+Halcon实战代码!
人工智能·数码相机·opencv·计算机视觉·机器人·视觉检测·制造
小白量化10 小时前
聚宽策略分享-1年化98国九条后中小板微盘小改
大数据·数据库·人工智能·量化·qmt
张拭心15 小时前
Cursor 又偷偷更新,这个功能太实用:Visual Editor for Cursor Browser
前端·人工智能
吴佳浩15 小时前
大模型 MoE,你明白了么?
人工智能·llm
Blossom.11817 小时前
基于Embedding+图神经网络的开源软件供应链漏洞检测:从SBOM到自动修复的完整实践
人工智能·分布式·深度学习·神经网络·copilot·开源软件·embedding
t1987512817 小时前
电力系统经典节点系统潮流计算MATLAB实现
人工智能·算法·matlab
万悉科技17 小时前
比 Profound 更适合中国企业的GEO产品
大数据·人工智能
mqiqe17 小时前
vLLM(vLLM.ai)生产环境部署大模型
人工智能·vllm
V1ncent Chen17 小时前
机器是如何“洞察“世界的?:深度学习
人工智能·深度学习
AI营销前沿17 小时前
中国AI营销专家深度解析:谁在定义AI营销的未来?
人工智能