16.5 DarLoc:基于深度学习和数据特征增强的鲁棒室内磁定位

文献来源:

Wang Q, Jia J, Deng Y, et al. DarLoc: Deep learning and data-feature augmentation based robust magnetic indoor localization[J]. Expert Systems with Applications, 2024, 244: 122921.

摘要:

由于地磁场的普遍性,基于磁场的室内定位方法受到了广泛的关注,并且不需要额外的基础设施。然而,现有方法仍然面临着设备类型、行人持有姿态和移动速度等因素造成的异质性问题。为了解决这个问题,本文提出了一种新的基于深度学习和数据特征增强的磁性定位框架(DarLoc)。首先,采用方向不敏感的磁信号提取方法去除序列中的直流分量,以消除不同保持姿态和不同移动设备带来的影响;其次,提出了新颖的数据增强和特征增强方法来提取速度信息的特征,从而解决了不同移动速度带来的多尺度序列问题;最后,提出了一种深度多尺度时空学习模型,用于同时提取增强序列的空间和时间特征,并对具有不同移动速度和姿态的人进行鲁棒定位。在长达14个月的时间里,研究人员对189名志愿者使用4种不同的移动设备和多种移动速度进行了广泛的实验,以评估DarLoc的性能。实验结果表明:(1)DarLoc算法在恒定和可变移动速度场景下的平均定位精度分别为0.47 m和0.56 m;(2)与现有定位方法相比,DarLoc的定位精度分别提高了约41%和60%。

相关推荐
endcy20163 小时前
基于Spring AI的RAG和智能体应用实践
人工智能·ai·系统架构
Blossom.1183 小时前
移动端部署噩梦终结者:动态稀疏视觉Transformer的量化实战
java·人工智能·python·深度学习·算法·机器学习·transformer
FPGA小迷弟3 小时前
ChatGPT回答用AI怎么怎么赚钱
大数据·人工智能
轻微的风格艾丝凡4 小时前
卷积的直观理解
人工智能·深度学习·神经网络·算法·计算机视觉·matlab·cnn
月下倩影时4 小时前
视觉进阶篇——机器学习训练过程(手写数字识别,量大管饱需要耐心)
人工智能·学习·机器学习
PixelMind4 小时前
【超分辨率专题】HYPIR:扩散模型先验与 GAN 对抗训练相结合的新型图像复原框架
人工智能·生成对抗网络·扩散模型·图像复原
说私域4 小时前
从裂变能力竞争到技术水平竞争:开源AI智能名片链动2+1模式S2B2C商城小程序对微商企业竞争格局的重塑
人工智能·小程序·开源
xybDIY4 小时前
基于 Tuya.AI 开源的大模型构建智能聊天机器人
人工智能·机器人·开源
这张生成的图像能检测吗4 小时前
(论文速读)基于DCP-MobileViT网络的焊接缺陷识别
图像处理·深度学习·计算机视觉·可视化·缺陷识别·焊缝缺陷
智慧地球(AI·Earth)6 小时前
GPT-5.1发布!你的AI更暖更智能!
人工智能·gpt·神经网络·aigc·agi