16.5 DarLoc:基于深度学习和数据特征增强的鲁棒室内磁定位

文献来源:

Wang Q, Jia J, Deng Y, et al. DarLoc: Deep learning and data-feature augmentation based robust magnetic indoor localization[J]. Expert Systems with Applications, 2024, 244: 122921.

摘要:

由于地磁场的普遍性,基于磁场的室内定位方法受到了广泛的关注,并且不需要额外的基础设施。然而,现有方法仍然面临着设备类型、行人持有姿态和移动速度等因素造成的异质性问题。为了解决这个问题,本文提出了一种新的基于深度学习和数据特征增强的磁性定位框架(DarLoc)。首先,采用方向不敏感的磁信号提取方法去除序列中的直流分量,以消除不同保持姿态和不同移动设备带来的影响;其次,提出了新颖的数据增强和特征增强方法来提取速度信息的特征,从而解决了不同移动速度带来的多尺度序列问题;最后,提出了一种深度多尺度时空学习模型,用于同时提取增强序列的空间和时间特征,并对具有不同移动速度和姿态的人进行鲁棒定位。在长达14个月的时间里,研究人员对189名志愿者使用4种不同的移动设备和多种移动速度进行了广泛的实验,以评估DarLoc的性能。实验结果表明:(1)DarLoc算法在恒定和可变移动速度场景下的平均定位精度分别为0.47 m和0.56 m;(2)与现有定位方法相比,DarLoc的定位精度分别提高了约41%和60%。

相关推荐
Master_oid3 分钟前
机器学习25:了解领域自适应(Domain Adaptation)
人工智能·深度学习·机器学习
永恒-龙啸10 分钟前
图像增强与滤波
图像处理·人工智能·计算机视觉
嗷嗷哦润橘_24 分钟前
AI Agent学习:MetaGPT项目之RAG
人工智能·python·学习·算法·deepseek
Buxxxxxx28 分钟前
DAY 39 GPU训练及类的call方法
人工智能
我有医保我先冲29 分钟前
企业级会议管理工具选型指南:从需求分析到方案落地
人工智能·经验分享·自然语言处理·需求分析
良策金宝AI35 分钟前
从CAD插件到原生平台:工程AI的演进路径与智能协同新范式
大数据·人工智能
陈天伟教授41 分钟前
人工智能应用-机器视觉:车牌识别(2)
人工智能·神经网络·机器学习
江上鹤.14843 分钟前
Day37 MLP神经网络的训练
人工智能·深度学习·神经网络
java1234_小锋1 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 残差连接(Residual Connection)详解以及算法实现
深度学习·语言模型·transformer
min1811234561 小时前
分公司组织架构图在线设计 总部分支管理模板
大数据·人工智能·信息可视化·架构·流程图