16.5 DarLoc:基于深度学习和数据特征增强的鲁棒室内磁定位

文献来源:

Wang Q, Jia J, Deng Y, et al. DarLoc: Deep learning and data-feature augmentation based robust magnetic indoor localization[J]. Expert Systems with Applications, 2024, 244: 122921.

摘要:

由于地磁场的普遍性,基于磁场的室内定位方法受到了广泛的关注,并且不需要额外的基础设施。然而,现有方法仍然面临着设备类型、行人持有姿态和移动速度等因素造成的异质性问题。为了解决这个问题,本文提出了一种新的基于深度学习和数据特征增强的磁性定位框架(DarLoc)。首先,采用方向不敏感的磁信号提取方法去除序列中的直流分量,以消除不同保持姿态和不同移动设备带来的影响;其次,提出了新颖的数据增强和特征增强方法来提取速度信息的特征,从而解决了不同移动速度带来的多尺度序列问题;最后,提出了一种深度多尺度时空学习模型,用于同时提取增强序列的空间和时间特征,并对具有不同移动速度和姿态的人进行鲁棒定位。在长达14个月的时间里,研究人员对189名志愿者使用4种不同的移动设备和多种移动速度进行了广泛的实验,以评估DarLoc的性能。实验结果表明:(1)DarLoc算法在恒定和可变移动速度场景下的平均定位精度分别为0.47 m和0.56 m;(2)与现有定位方法相比,DarLoc的定位精度分别提高了约41%和60%。

相关推荐
Salt_07283 分钟前
DAY 40 早停策略和模型权重的保存
人工智能·python·算法·机器学习
码农小白猿16 分钟前
IACheck优化电梯定期检验报告:自动化术语审核提升合规性与效率
大数据·运维·人工智能·ai·自动化·iacheck
点云SLAM17 分钟前
Absence 英文单词学习
人工智能·英文单词学习·雅思备考·absence·缺席 / 不在场·缺乏 / 缺失
酌沧29 分钟前
读懂深度学习中的梯度爆炸和梯度消失
人工智能·深度学习
DARLING Zero two♡36 分钟前
接入 AI Ping 限免接口,让 GLM-4.7 与 MiniMax-M2.1 成为你的免费 C++ 审计专家
开发语言·c++·人工智能
不惑_40 分钟前
通俗理解感知机(Perceptron)
人工智能·python
龙腾AI白云40 分钟前
【图神经网络初探(2)】
人工智能
说私域42 分钟前
移动互联网生态下定制开发开源AI智能名片S2B2C商城小程序源码在营销技术中的应用与发展
人工智能·小程序·开源
胡伯来了1 小时前
24 Transformers - 训练自然语言处理模型
人工智能·自然语言处理·transformer·transformers
JoannaJuanCV1 小时前
自动驾驶—CARLA仿真(29)传感器(Sensors and data)
人工智能·机器学习·自动驾驶