【神经网络】图像的数字视角

文章目录

图像的数字视角

引言

在机器视觉和目标识别领域,需要处理的对象都是图像,但这些领域的模型都是针对数值进行训练的,那么图像和数值之间是什么关系呢?答案是数字图像天生就是数值形式的。

直观感受

左边是手写数字3的图片形式,右边是手写数字3的像素点形式。

也就是说图像是由像素点组成的二维数组,二维数组的维数由图像的长和宽决定。其中每个像素点也是一个数组,若考虑单通道,数组就一个值,若RGB三通道,数组有三个值。换个说法,每个图像可以看成是三维数组的数值,三维分别是长度,宽度,通道数。下面使用图像常用的函数,去剖析图像的内在。

内在剖析

图像的内在其实就是一个三维数组。

图像常用函数

load_img():将目录下图片加载到程序中内存

img_to_array():将图片转成数字格式显示

复制代码
# 路径下加载图片(图像形式)
img1 = load_img('../../dataset/att_faces/s2/1.pgm',color_mode='grayscale')
# 将图像转换成数值形式(数值形式)
img2 = img_to_array(img1)
# 对比显示
img1
img2

左边是图像形式,右边是对应的数值形式,可以看到有三层大括号,所以是三维数组。

图像三维层次

复制代码
# 图像尺寸 (长,宽)
img1.size

(92,112)

复制代码
# 三维数组外层尺寸
len(img2)

112

复制代码
# 三维数组内层尺寸
len(img2[0])

92

复制代码
# 像素点尺寸
len(img2[0][0])

3

可以看到,图像以三通道方式 加载,像素点尺寸为3,图像数值形式的最外层数组大小为图像的宽112,内层数组大小为图像的长92

经验总结

1 图像本质就是一个由长、宽、通道值组成的三维数组。

相关推荐
JicasdC123asd2 分钟前
黄瓜植株目标检测:YOLOv8结合Fasternet与BiFPN的高效改进方案
人工智能·yolo·目标检测
爱吃泡芙的小白白24 分钟前
深入解析:2024年AI大模型核心算法与应用全景
人工智能·算法·大模型算法
哥布林学者1 小时前
吴恩达深度学习课程五:自然语言处理 第二周:词嵌入(二)词嵌入模型原理
深度学习·ai
小程故事多_801 小时前
攻克RAG系统最后一公里 图文混排PDF解析的挑战与实战方案
人工智能·架构·pdf·aigc
琅琊榜首20201 小时前
AI+编程双驱动:高质量短剧创作全流程指南
人工智能
Master_oid2 小时前
机器学习29:增强式学习(Deep Reinforcement Learning)④
人工智能·学习·机器学习
Cemtery1162 小时前
Day26 常见的降维算法
人工智能·python·算法·机器学习
zxsz_com_cn2 小时前
预测性维护在智能制造设备上的实际应用
人工智能
一条闲鱼_mytube2 小时前
智能体设计模式(三)多智能体协作-记忆管理-学习与适应
人工智能·学习·设计模式
scott1985123 小时前
opencv 畸变系数的说明
人工智能·数码相机·opencv