【神经网络】图像的数字视角

文章目录

图像的数字视角

引言

在机器视觉和目标识别领域,需要处理的对象都是图像,但这些领域的模型都是针对数值进行训练的,那么图像和数值之间是什么关系呢?答案是数字图像天生就是数值形式的。

直观感受

左边是手写数字3的图片形式,右边是手写数字3的像素点形式。

也就是说图像是由像素点组成的二维数组,二维数组的维数由图像的长和宽决定。其中每个像素点也是一个数组,若考虑单通道,数组就一个值,若RGB三通道,数组有三个值。换个说法,每个图像可以看成是三维数组的数值,三维分别是长度,宽度,通道数。下面使用图像常用的函数,去剖析图像的内在。

内在剖析

图像的内在其实就是一个三维数组。

图像常用函数

load_img():将目录下图片加载到程序中内存

img_to_array():将图片转成数字格式显示

复制代码
# 路径下加载图片(图像形式)
img1 = load_img('../../dataset/att_faces/s2/1.pgm',color_mode='grayscale')
# 将图像转换成数值形式(数值形式)
img2 = img_to_array(img1)
# 对比显示
img1
img2

左边是图像形式,右边是对应的数值形式,可以看到有三层大括号,所以是三维数组。

图像三维层次

复制代码
# 图像尺寸 (长,宽)
img1.size

(92,112)

复制代码
# 三维数组外层尺寸
len(img2)

112

复制代码
# 三维数组内层尺寸
len(img2[0])

92

复制代码
# 像素点尺寸
len(img2[0][0])

3

可以看到,图像以三通道方式 加载,像素点尺寸为3,图像数值形式的最外层数组大小为图像的宽112,内层数组大小为图像的长92

经验总结

1 图像本质就是一个由长、宽、通道值组成的三维数组。

相关推荐
哥布林学者5 分钟前
吴恩达深度学习课程五:自然语言处理 第一周:循环神经网络 (三)语言模型
深度学习·ai
小途软件7 分钟前
高校宿舍访客预约管理平台开发
java·人工智能·pytorch·python·深度学习·语言模型
人工智能培训29 分钟前
10分钟了解向量数据库(3)
人工智能·大模型·知识图谱·强化学习·智能体搭建
华清远见成都中心38 分钟前
人工智能要学习的课程有哪些?
人工智能·学习
普通网友1 小时前
Bard 的模型压缩技术:在保证性能的前提下如何实现轻量化部署
人工智能·机器学习·bard
白帽子黑客罗哥1 小时前
不同就业方向(如AI、网络安全、前端开发)的具体学习路径和技能要求是什么?
人工智能·学习·web安全
捕风捉你1 小时前
【AI转行04】特征工程:治疗 AI 的“学不会”和“想太多”
人工智能·深度学习·机器学习
何贤1 小时前
2026 年程序员自救指南
人工智能·程序员·掘金技术征文
AKAMAI1 小时前
分布式边缘推理正在改变一切
人工智能·分布式·云计算
极新1 小时前
智面玄赏联合创始人李男:人工智能赋能招聘行业——从效率革新到平台经济重构|2025极新AIGC峰会演讲实录
人工智能·百度