自动驾驶仿真:Carsim转向传动比设置

文章目录


一、转向传动比概念

转向传动比(Steering Ratio)表示方向盘转动角度与车轮转动角度之间的关系。公式如下:

转向传动比 = 方向盘转动角度 车轮转动角度 \text{转向传动比} = \frac{\text{方向盘转动角度}}{\text{车轮转动角度}} 转向传动比=车轮转动角度方向盘转动角度

例如,假设方向盘转动 360 度,而车轮转动 30 度,那么转向传动比为:

转向传动比 = 36 0 ∘ 3 0 ∘ = 12 : 1 \text{转向传动比} = \frac{360^\circ}{30^\circ} = 12:1 转向传动比=30∘360∘=12:1

二、设置转向传动比

1、C factor概念

C factor : 方向盘转一圈齿条移动的位移 \text{C factor} : {\text{方向盘转一圈齿条移动的位移}} C factor:方向盘转一圈齿条移动的位移

2、Steer Kinematics概念

Rack to front wheels: Steer Kinematics : 齿条位移和前轮转角之间的关系 \text{Rack to front wheels: Steer Kinematics} : {\text{齿条位移和前轮转角之间的关系}} Rack to front wheels: Steer Kinematics:齿条位移和前轮转角之间的关系

3、传动比计算公式

1)由于Carsim中没有直接设置转向传动比的关系,在Carsim中计算传动比的关系式如下:

转向传动比 = 1 / ( (C factor / 360) ∗ Steer Kinematics ) \text{转向传动比} = 1 / ({\text{(C factor / 360)}}*{\text{Steer Kinematics}}) 转向传动比=1/((C factor / 360)∗Steer Kinematics)

注意:这里需要c factor / 360,因为要将rev转换成deg;

2)假设取左前轮斜率的平均值,得Steer Kinematics(平均) = 0.45 (deg/mm);


计算Steer Kinematics平均值:


3)假设你需要的传动比是12,推导得:

转向传动比 = 1 / ( (C factor / 360) ∗ Steer Kinematics ) \text{转向传动比} =1 / ({\text{(C factor / 360)}}*{\text{Steer Kinematics}}) 转向传动比=1/((C factor / 360)∗Steer Kinematics)

得:
12 = 1 / ( (C factor / 360) ∗ Steer Kinematics ) \text{12} =1 / ({\text{(C factor / 360)}}*{\text{Steer Kinematics}}) 12=1/((C factor / 360)∗Steer Kinematics)

得:
12 = 1 / ( (C factor / 360) ∗ 0.452 ) 得 : C f a c t o r ≈ 66.67 ( m m / r e v ) \text{12} =1 / ({\text{(C factor / 360)}}*{\text{0.452}}) 得 : C factor ≈ 66.67(mm/rev) 12=1/((C factor / 360)∗0.452)得:Cfactor≈66.67(mm/rev)


三、转向传动比验证

1、由上述可得传动比为12的时候,C factor为66.67(mm/rev),代入carsim:


2、设置方向盘输出角度为120deg,由于12 = 传动比 = 方向盘角度 / 前轮转角,因此前轮转角大概为10deg左右;


曲线结果符合预期,因此公式正确;

相关推荐
JoannaJuanCV8 小时前
自动驾驶—CARLA仿真(5)Actors与Blueprints
人工智能·机器学习·自动驾驶
JoannaJuanCV9 小时前
自动驾驶—CARLA仿真(0)报错记录
人工智能·机器学习·自动驾驶
JoannaJuanCV12 小时前
自动驾驶—CARLA仿真(4)基础概念
人工智能·机器学习·自动驾驶
JoannaJuanCV12 小时前
自动驾驶—CARLA仿真(3) 坐标和坐标变换
人工智能·机器学习·自动驾驶
韩曙亮15 小时前
【自动驾驶】Autoware 架构 ① ( 自动驾驶的两种核心技术架构 | 基于规则技术架构 | 端到端技术架构 )
人工智能·自动驾驶·e2e·autoware·端到端·基于规则技术架构·端到端技术架构
JoannaJuanCV16 小时前
自动驾驶—CARLA仿真(2)入门指南
人工智能·机器学习·自动驾驶·carla
JoannaJuanCV1 天前
自动驾驶—CARLA 仿真(1)安装与demo测试
人工智能·机器学习·自动驾驶·carla
audyxiao0012 天前
智能交通顶刊TITS论文分享|如何让自动驾驶模型感知驾驶风格和自动理解周围车辆意图?请看此文
人工智能·机器学习·自动驾驶·tits·styleformer
Luminbox紫创测控3 天前
汽车自动驾驶的太阳光模拟应用研究
人工智能·自动驾驶·汽车
ARM+FPGA+AI工业主板定制专家5 天前
基于JETSON ORIN+FPGA+GMSL+AI的高带宽低延迟机器视觉方案
网络·人工智能·目标检测·计算机视觉·fpga开发·自动驾驶