自动驾驶仿真:Carsim转向传动比设置

文章目录


一、转向传动比概念

转向传动比(Steering Ratio)表示方向盘转动角度与车轮转动角度之间的关系。公式如下:

转向传动比 = 方向盘转动角度 车轮转动角度 \text{转向传动比} = \frac{\text{方向盘转动角度}}{\text{车轮转动角度}} 转向传动比=车轮转动角度方向盘转动角度

例如,假设方向盘转动 360 度,而车轮转动 30 度,那么转向传动比为:

转向传动比 = 36 0 ∘ 3 0 ∘ = 12 : 1 \text{转向传动比} = \frac{360^\circ}{30^\circ} = 12:1 转向传动比=30∘360∘=12:1

二、设置转向传动比

1、C factor概念

C factor : 方向盘转一圈齿条移动的位移 \text{C factor} : {\text{方向盘转一圈齿条移动的位移}} C factor:方向盘转一圈齿条移动的位移

2、Steer Kinematics概念

Rack to front wheels: Steer Kinematics : 齿条位移和前轮转角之间的关系 \text{Rack to front wheels: Steer Kinematics} : {\text{齿条位移和前轮转角之间的关系}} Rack to front wheels: Steer Kinematics:齿条位移和前轮转角之间的关系

3、传动比计算公式

1)由于Carsim中没有直接设置转向传动比的关系,在Carsim中计算传动比的关系式如下:

转向传动比 = 1 / ( (C factor / 360) ∗ Steer Kinematics ) \text{转向传动比} = 1 / ({\text{(C factor / 360)}}*{\text{Steer Kinematics}}) 转向传动比=1/((C factor / 360)∗Steer Kinematics)

注意:这里需要c factor / 360,因为要将rev转换成deg;

2)假设取左前轮斜率的平均值,得Steer Kinematics(平均) = 0.45 (deg/mm);


计算Steer Kinematics平均值:


3)假设你需要的传动比是12,推导得:

转向传动比 = 1 / ( (C factor / 360) ∗ Steer Kinematics ) \text{转向传动比} =1 / ({\text{(C factor / 360)}}*{\text{Steer Kinematics}}) 转向传动比=1/((C factor / 360)∗Steer Kinematics)

得:
12 = 1 / ( (C factor / 360) ∗ Steer Kinematics ) \text{12} =1 / ({\text{(C factor / 360)}}*{\text{Steer Kinematics}}) 12=1/((C factor / 360)∗Steer Kinematics)

得:
12 = 1 / ( (C factor / 360) ∗ 0.452 ) 得 : C f a c t o r ≈ 66.67 ( m m / r e v ) \text{12} =1 / ({\text{(C factor / 360)}}*{\text{0.452}}) 得 : C factor ≈ 66.67(mm/rev) 12=1/((C factor / 360)∗0.452)得:Cfactor≈66.67(mm/rev)


三、转向传动比验证

1、由上述可得传动比为12的时候,C factor为66.67(mm/rev),代入carsim:


2、设置方向盘输出角度为120deg,由于12 = 传动比 = 方向盘角度 / 前轮转角,因此前轮转角大概为10deg左右;


曲线结果符合预期,因此公式正确;

相关推荐
数字芯片实验室11 天前
特斯拉HW5要上3nm工艺,自动驾驶芯片的军备竞赛
人工智能·机器学习·自动驾驶
小虎卫远程打卡app11 天前
自动驾驶避障思考
人工智能·chatgpt·自动驾驶
点云SLAM12 天前
PyTorch 中torch.clamp函数使用详解和实战示例
人工智能·pytorch·python·自动驾驶·slam·3d深度学习·张量操作
aixingkong92112 天前
需求初步探讨-从OR-AR
服务器·嵌入式硬件·自动驾驶·硬件工程
地平线开发者13 天前
地平线高效 backbone: HENet - V1.0
算法·自动驾驶
摘取一颗天上星️17 天前
自动驾驶技术路线之争:视觉派、激光雷达派与融合派,谁将引领未来?
人工智能·机器学习·自动驾驶
一点.点17 天前
MPDrive:利用基于标记的提示学习提高自动驾驶的空间理解能力
人工智能·自动驾驶
vlln19 天前
【论文解读】AgentThink:让VLM在自动驾驶中学会思考与使用工具
人工智能·机器学习·自动驾驶
数据堂官方账号19 天前
七大技术路线解析:自动驾驶如何被数据重新定义
人工智能·机器学习·自动驾驶
地平线开发者19 天前
BEV 感知算法评价指标简介
算法·自动驾驶