平移矩阵中的数学思考

《webgl编程指南》中,"平移矩阵"中相关值的得出

是基于"矩阵和向量相乘所得的等式"与"向量表达式"组成一个方程组

x'=ax+by+cz+d

x'=x+Tx

书中说,根据上面的方程组,可以很容易得出

a=1、b=0、c=0、d=Tx

0、问题来了!

我也确实可以看出,a=1、b=0、c=0、d=Tx,是上述方程组的一个解

但是,我觉得这种方式很不"数学"很不"严谨" !!

也没有用严谨的手段来证明,只有这1个解!!(我这篇文章也没有证明)

下面写出自己的一些思考和推导过程

1、定义和概念:

正确的定义和概念,就可以极大的推进问题的解决

上述方程组中,我觉得有这么几类数据:

|--------|----------|---------------------------------------|
| 类型 | 相关变量 | 备注 |
| "自由"变量 | x、y、z、x' | 可以随意赋值为任何数 |
| 未知常量 | a、b、c、d | 要解出"未知常量" 不是求x、y、z的值 (一般方程是求xyz值) |
| 已知常量 | Tx | 可以当做一个已知常数来对待 |

2、取值互相不约束

上述方程中x、y、z的取值,是互相不限制

(x想取什么值,就取什么值,不需要考虑y或z是什么值)

备注:

下述方程组中,x、y的值就是互相制约和限制(x想取什么值,需要考虑y已经取了什么值)

23x+17y=63

17x+23y=57

3、方案1:

基于1的结论,我可以随便给出x、y、z的值

给出4组值,就会组成4个等式,然后求4个"未知常量"

4、方案2:

因为x、y、z可以取任意值,可以取一个特殊值,比如0

来快速求解出"未知常量"

把上述方程组,改成等式:ax+by+cz+d=x+Tx

**情形A:**x=0;y=0;z=0;

带入等式:0a+0b+0c+d=0+Tx

结果:d=Tx

**情形B:**x=0;y=0;z=1;

带入等式:0a+0b+1c+d=0+Tx

结果:c=Tx-d

因为:Tx=d

所以:c=0

**情形C:**x=0;y=1;z=0;

带入等式:0a+1b+0c+d=0+Tx

结果:b=0

**情形D:**x=1;y=0;z=0;

带入等式:1a+0b+0c+d=1+Tx

结果:a=1

至此:

才算严格的证明了:

a=1、b=0、c=0、d=Tx是方程的一个解!

(数学水平一般,不知道这个推导对不对,欢迎大家指正)

相关推荐
林枫依依36 分钟前
电脑配置流程(WebGL项目)
webgl
AI科技星1 小时前
统一场论中电场的几何起源:基于立体角变化率的第一性原理推导与验证
服务器·人工智能·线性代数·算法·矩阵·生活
好奇龙猫11 小时前
【大学院-筆記試験練習:线性代数和数据结构(2)】
数据结构·线性代数·决策树
benjiangliu12 小时前
STM32教程-03-STM32总线矩阵和系统框图
stm32·嵌入式硬件·矩阵
平生不喜凡桃李12 小时前
Leetcode-240 :搜索二维矩阵
leetcode·矩阵·深度优先
郑同学的笔记1 天前
【Eigen教程02】深入Eigen矩阵引擎:模板参数、内存布局与基础操作指南
c++·线性代数·矩阵·eigen
Sunflower_ac1 天前
线性代数学习笔记(未完结)
人工智能·笔记·学习·线性代数·机器学习
YGGP1 天前
【Golang】LeetCode 1351. 统计有序矩阵中的负数
leetcode·矩阵
梭七y1 天前
【力扣hot100题】(119)搜索二维矩阵 II
算法·leetcode·矩阵
式5162 天前
线性代数(十一)子空间的扩展
python·线性代数·机器学习