Flink parallelism 和 Slot 介绍

Flink Parallelism介绍

在Apache Flink中,Parallelism(并行度)是一个核心概念,它决定了Flink任务(Task)的并行执行程度。Parallelism指的是在Flink应用程序中,一个算子(Operator)或任务可以同时处理的输入数据流或并发任务的数量。通过并行执行,Flink能够实现更高的吞吐量和更低的延迟。

Flink的并行度可以在两个级别进行配置:

作业级别并行度(Job Parallelism):

定义:作业级别并行度是指整个作业中任务的数量,它决定了作业的整体并行执行能力。

配置方式:可以在提交作业时通过编程API或命令行参数进行指定。例如,设置作业级别并行度为4,表示将作业划分为4个并发任务进行执行。

算子级别并行度(Operator Parallelism):

定义:算子级别并行度是指每个算子(Operator)的任务数量,它决定了每个算子的并行执行程度。

配置方式:在Flink中,每个算子都可以独立地设置并行度。默认情况下,算子的并行度与作业级别并行度相同,但可以根据需要进行调整。

并行度的选择需要考虑多个因素,包括可用的计算资源、数据流的特性、任务之间的依赖关系以及作业的性能需求。合理的并行度设置可以充分利用集群的资源,提高作业的吞吐量和响应时间。

Flink Slot介绍

Slot(槽)是Flink中的另一种资源分配单位,用于执行并行的任务或算子。Slot是TaskManager中资源分配的基本单位,代表着TaskManager的一部分计算资源,主要包括CPU、内存以及其他可能的资源(如磁盘空间、网络带宽等)。

每个TaskManager可以划分为多个Slot,这些Slot是静态配置的,用于隔离或封装资源,防止多个Task之间抢占资源。默认情况下,每个Slot都分配一个CPU。Slot的数量可以在Flink的配置文件中设置,如taskmanager.numberOfTaskSlots: 3。

在Flink中,Slot与任务(Task)的关系是多对一的关系,即一个Slot可以执行一个或多个任务,但一个任务只能被一个Slot执行。当Flink提交任务时,它会根据任务的并行度(parallelism)和集群中可用的Slot数量来分配任务到不同的Slot上执行。

Slot机制具有以下几个特点:

资源隔离:每个Slot独立管理其占用的资源,避免不同任务间的资源争抢。

并行执行:作业中的一个算子设置了并行度之后,会生成对应的多个子任务,这些子任务将会被分配到不同或相同的Slot上执行,以实现并行处理数据。

算子链与共享Slot:Flink支持算子链(Operator Chaining),当链上的算子具有相同的并行度时,这些算子可以共享一个Slot,减少数据在内存中传输的成本,提高性能。

动态资源调整:在YARN或Kubernetes等资源管理系统中,Flink能够动态申请和释放TaskManager上的Slot,从而适应不断变化的作业负载。

通过合理配置Slot和并行度,可以优化Flink程序的性能和资源利用率。

相关推荐
Leo.yuan20 分钟前
数据隐私是什么?如何做好数据隐私规范?
大数据·网络·数据库·人工智能·信息可视化
企业智能研究30 分钟前
企业如何高效构建BI团队,解锁数据价值新高地?
大数据·数据库·人工智能
武子康2 小时前
大数据-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带PO
大数据·后端
vivo互联网技术2 小时前
vivo Pulsar 万亿级消息处理实践(2)-从0到1建设 Pulsar 指标监控链路
大数据·kafka·消息队列·pulsar
TGC达成共识2 小时前
菌菇食用攻略:从营养解析到安全指南,解锁科学食菌
大数据·人工智能·其他·安全·百度·生活·新浪微博
cdsmjt2 小时前
成都国际数字影像产业园现状与未来发展蓝图
大数据
AI设计小站3 小时前
组织结构图软件:数据驱动的可视化架构管理工具
大数据·人工智能·信息可视化·架构
顽强卖力7 小时前
数据分析六部曲?
大数据·数据挖掘·数据分析
AWS官方合作商12 小时前
亚马逊云科技 Amazon Pinpoint 解决方案:构建智能全渠道互动平台,重塑用户增长体验
大数据·科技·aws