Flink parallelism 和 Slot 介绍

Flink Parallelism介绍

在Apache Flink中,Parallelism(并行度)是一个核心概念,它决定了Flink任务(Task)的并行执行程度。Parallelism指的是在Flink应用程序中,一个算子(Operator)或任务可以同时处理的输入数据流或并发任务的数量。通过并行执行,Flink能够实现更高的吞吐量和更低的延迟。

Flink的并行度可以在两个级别进行配置:

作业级别并行度(Job Parallelism):

定义:作业级别并行度是指整个作业中任务的数量,它决定了作业的整体并行执行能力。

配置方式:可以在提交作业时通过编程API或命令行参数进行指定。例如,设置作业级别并行度为4,表示将作业划分为4个并发任务进行执行。

算子级别并行度(Operator Parallelism):

定义:算子级别并行度是指每个算子(Operator)的任务数量,它决定了每个算子的并行执行程度。

配置方式:在Flink中,每个算子都可以独立地设置并行度。默认情况下,算子的并行度与作业级别并行度相同,但可以根据需要进行调整。

并行度的选择需要考虑多个因素,包括可用的计算资源、数据流的特性、任务之间的依赖关系以及作业的性能需求。合理的并行度设置可以充分利用集群的资源,提高作业的吞吐量和响应时间。

Flink Slot介绍

Slot(槽)是Flink中的另一种资源分配单位,用于执行并行的任务或算子。Slot是TaskManager中资源分配的基本单位,代表着TaskManager的一部分计算资源,主要包括CPU、内存以及其他可能的资源(如磁盘空间、网络带宽等)。

每个TaskManager可以划分为多个Slot,这些Slot是静态配置的,用于隔离或封装资源,防止多个Task之间抢占资源。默认情况下,每个Slot都分配一个CPU。Slot的数量可以在Flink的配置文件中设置,如taskmanager.numberOfTaskSlots: 3。

在Flink中,Slot与任务(Task)的关系是多对一的关系,即一个Slot可以执行一个或多个任务,但一个任务只能被一个Slot执行。当Flink提交任务时,它会根据任务的并行度(parallelism)和集群中可用的Slot数量来分配任务到不同的Slot上执行。

Slot机制具有以下几个特点:

资源隔离:每个Slot独立管理其占用的资源,避免不同任务间的资源争抢。

并行执行:作业中的一个算子设置了并行度之后,会生成对应的多个子任务,这些子任务将会被分配到不同或相同的Slot上执行,以实现并行处理数据。

算子链与共享Slot:Flink支持算子链(Operator Chaining),当链上的算子具有相同的并行度时,这些算子可以共享一个Slot,减少数据在内存中传输的成本,提高性能。

动态资源调整:在YARN或Kubernetes等资源管理系统中,Flink能够动态申请和释放TaskManager上的Slot,从而适应不断变化的作业负载。

通过合理配置Slot和并行度,可以优化Flink程序的性能和资源利用率。

相关推荐
武子康7 小时前
大数据-184 Elasticsearch Doc Values 机制详解:列式存储如何支撑排序/聚合/脚本
大数据·后端·elasticsearch
expect7g7 小时前
Paimon源码解读 -- Compaction-8.专用压缩任务
大数据·后端·flink
良策金宝AI9 小时前
从CAD插件到原生平台:工程AI的演进路径与智能协同新范式
大数据·人工智能
康实训10 小时前
智慧老年实训室建设核心方案
大数据·实训室·养老实训室·实训室建设
min18112345610 小时前
分公司组织架构图在线设计 总部分支管理模板
大数据·人工智能·信息可视化·架构·流程图
周杰伦_Jay10 小时前
【Elasticsearch】核心概念,倒排索引,数据操纵
大数据·elasticsearch·搜索引擎
cai_cai010 小时前
springAlibaba + ollama + es 完成RAG知识库功能
大数据·elasticsearch·搜索引擎
Cx330❀10 小时前
Git 分支管理完全指南:从基础到团队协作
大数据·git·搜索引擎·全文检索
nhdh10 小时前
ELK(elasticsearch-7.6.2,kibana-7-6-2,Logstash-7.6.2)单节点部署
大数据·elk·elasticsearch
新元代码10 小时前
Git在Windows环境下的安装与使用教程
大数据·elasticsearch·搜索引擎