OpenCV 车道检测

OpenCV 车道检测

前言

如果要检测道路图像中的车道,方法之一是利用深度学习的语义分割技术。而在 OpenCV 中解决此问题可以使用边缘检测器。在本节中,我们将了解如何使用边缘检测和直线检测识别道路图像中的车道。

模型分析

使用 OpenCV 检测图像中道路边缘的策略如下:

  1. 检测图像中的对象边缘
  2. 识别遵循直线且连接的边缘
  3. 从图像的一端延伸识别出的直线至另一端

车道检测

(1) 导入库并查看示例图像:

python 复制代码
import cv2, numpy as np
import matplotlib.pyplot as plt,cv2

IMG = cv2.imread('3.jpeg')
img = np.uint8(IMG.copy())

图像中包含许多信息,但本节中我们只需要检测直线。使用 Canny 边缘检测器可以获取图像边缘,当颜色发生剧烈变化时,Canny 检测器会将其识别为边缘,颜色变化在数学上取决于图像内像素的梯度。两个像素的差异越大,像素表示物体边缘的可能性就越高。

(2) 使用 cv2.Canny 边缘检测器获取图像中的边缘:

python 复制代码
img = cv2.blur(img, (5,5))
edges = cv2.Canny(img,150,200)
plt.imshow(edges, cmap='gray')
plt.show()

在以上代码中,首先使用 cv2.blur 对原始图像进行模糊处理,以 5 x 5 的窗口为单位,计算窗口内像素值的平均值,并将中心元素替换为周围像素的像素值的平均值。使用 cv2.Canny 方法计算边缘时,值 150200 分别表示边缘所对应的最小和最大可能梯度值。如果一个像素两侧的像素差值较大,则该像素会被识别为边缘。原始图像和模糊图像的边缘如下所示:

从上图中可以看出,对原始图像进行模糊处理后,边缘会更加清晰合理。识别出边缘后,我们介绍如何使用 HoughLines 技术从图像中提取直线。

(3) 使用 cv2.HoughLines 函数识别长度至少为 100 像素的直线:

python 复制代码
lines = cv2.HoughLines(edges,1,np.pi/180,150)

其中,参数值 100 指定识别直线的长度应至少为 100 像素。得到的每条线都包括与图像左下角的距离和相应的角度,通常用极坐标中的 [rho, theta] 表示。

(4) 绘制检测出的直线:

python 复制代码
lines = lines[:,0,:]
for rho,theta in lines:
    a = np.cos(theta)
    b = np.sin(theta)
    x0 = a*rho
    y0 = b*rho
    x1 = int(x0 + 10000*(-b))
    y1 = int(y0 + 10000*(a))
    x2 = int(x0 - 10000*(-b))
    y2 = int(y0 - 10000*(a))
    cv2.line(img,(x1,y1),(x2,y2),(0,0,255),2)

img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

plt.imshow(img)
plt.show()

本节中,我们首先通过执行模糊和边缘检测从图像中滤除噪声,得到候选车道像素。然后,使用 HoughLines 进一步过滤掉小于 100 个像素的直线候选。

相关链接

OpenCV简介与图像处理基础
详解 OpenCV 轮廓检测
OpenCV轮廓检测相关应用
语义分割详解

相关推荐
企业智能研究10 小时前
什么是数据治理?数据治理对企业有什么用?
大数据·人工智能·数据分析·agent
阿里云大数据AI技术10 小时前
面向 Interleaved Thinking 的大模型 Agent 蒸馏实践
人工智能
AI Echoes11 小时前
LangChain 非分割类型的文档转换器使用技巧
人工智能·python·langchain·prompt·agent
哔哔龙11 小时前
LangChain核心组件可用工具
人工智能
全栈独立开发者11 小时前
点餐系统装上了“DeepSeek大脑”:基于 Spring AI + PgVector 的 RAG 落地指南
java·人工智能·spring
2501_9418787411 小时前
在班加罗尔工程实践中构建可持续演进的机器学习平台体系与技术实现分享
人工智能·机器学习
guoketg11 小时前
BERT的技术细节和面试问题汇总
人工智能·深度学习·bert
永远在Debug的小殿下11 小时前
SLAM开发环境(虚拟机的安装)
人工智能
MF_AI11 小时前
大型烟雾火灾检测识别数据集:25w+图像,2类,yolo标注
图像处理·人工智能·深度学习·yolo·计算机视觉
百家方案11 小时前
航空港应急安全科教园区 — 应急安全产业园建设项目投标技术方案
人工智能·智慧园区