目录

基于Python的垃圾分类检测识别系统(Yolo4网络)【W8】

简介:

垃圾分类检测识别系统旨在利用深度学习和计算机视觉技术,实现对不同类别垃圾的自动识别和分类。应用环境包括Python编程语言、主流深度学习框架如TensorFlow或PyTorch,以及图像处理库OpenCV等,通过这些工具集成和优化模型,实现高效、精准的垃圾分类,为环境保护和可持续发展提供技术支持。

界面图:

系统介绍:

1. 网络模型

项目中使用的是YOLOv4 Tiny网络模型。YOLO(You Only Look Once)是一种流行的实时目标检测算法,它能够在图像中准确地检测和定位多个物体。YOLOv4 Tiny是YOLOv4的一个轻量级版本,专注于在保持高检测精度的同时提升检测速度,非常适合嵌入式设备和对速度要求较高的应用场景。

2. 开发环境

  • Python版本: 3.7,本人使用的是这个版本。

  • 深度学习框架: TensorFlow 2,用于构建和训练深度学习模型的强大框架,支持各种类型的神经网络。

  • 图像处理库: OpenCV,用于图像加载、处理、预处理和结果显示,是图像处理领域的标准库之一。

  • 用户界面: PyQt5,一种Python的GUI开发工具包,用于创建用户友好的图形用户界面,使得模型的使用更加直观和便捷。

3. 文件资源

  • 训练预测源代码: 包含训练模型和进行预测的全部代码。这些代码可以帮助用户了解模型的实现细节,并根据需要进行自定义和修改。

  • 训练好的模型: 已经通过大量数据集训练得到的模型文件。这些模型文件可以直接用于进行垃圾检测识别任务,无需重新训练,节省了时间和计算资源。

4. 功能特性

  • 多类别检测和识别: 能够识别超过10种不同类别的垃圾,这包括各种常见的垃圾类别。

  • 四分类能力: 模型具有更高的细粒度分类能力,可以将垃圾物体进一步细分为四类,这有助于更精准地对垃圾进行分类和处理。

  • 实时检测: 基于YOLOv4 Tiny的高效设计,能够实时处理图像或视频流,适用于需要快速响应的应用场景。

5. 使用方法

环境配置:

  • 安装Python和必要的依赖项,包括TensorFlow 2、OpenCV和PyQt5。可以使用Python的包管理工具(如pip或conda)来安装这些库。

  • 模型部署和使用:

    • 下载并加载训练好的YOLOv4 Tiny模型。可以从项目提供的资源中获取训练好的模型文件。
    • 编写或使用项目中提供的预测脚本,将模型应用于新的图像或实时视频流。
    • 根据需要调整检测阈值、输入图像大小等参数,以优化模型在具体任务上的表现。
  • 用户界面使用:

    • 如果项目中包含了GUI,可以直接通过图形用户界面操作模型。这种方式适合非技术用户或需要交互式操作的场景。

代码获取:【W7】基于Python的垃圾分类检测识别系统(Yolo4网络)

本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
Rolei_zl15 分钟前
Python小程序 - 文件处理3:正则表达式
python
Lovcsy26 分钟前
day12“函数”进阶学习让你更上一层楼
python
独行soc35 分钟前
2025年常见渗透测试面试题- 常见中间件(题目+回答)
前端·python·安全·中间件·面试·xss·红蓝攻防
爱分享的淘金达人1 小时前
25年河南事业单位报名详细流程图解
java·python·小程序·tomcat·流程图
小白—人工智能1 小时前
数据可视化 —— 多边图应用(大全)
python·信息可视化·数据可视化
noravinsc2 小时前
使用django实现windows任务调度管理
python·django·sqlite
hvinsion2 小时前
【Python 开源】你的 Windows 关机助手——PyQt5 版定时关机工具
windows·python·开源·定时关机
只因在人海中多看了你一眼2 小时前
Django从零搭建卖家中心注册页面实战
python·django
亿牛云爬虫专家2 小时前
Pyppeteer实战:基于Python的无头浏览器控制新选择
python·数据采集·爬虫代理·代理ip·无头浏览器·小红书·pyppeteer
小森77672 小时前
(四)机器学习---逻辑回归及其Python实现
人工智能·python·算法·机器学习·逻辑回归·线性回归