【深度学习】GELU激活函数是什么?

torch.nn.GELU 模块在 PyTorch 中实现了高斯误差线性单元(GELU)激活函数。GELU 被用于许多深度学习模型中,包括Transformer,因为它相比传统的 ReLU(整流线性单元)函数能够更好地近似神经元的真实激活行为。

概述

  • 功能: 应用 GELU 激活函数。
  • 公式: GELU 激活函数可以表示为:
    GELU ( x ) = x ⋅ Φ ( x ) \text{GELU}(x) = x \cdot \Phi(x) GELU(x)=x⋅Φ(x)
    其中 Φ ( x ) \Phi(x) Φ(x) 是标准正态分布的累积分布函数。

使用方法

要在神经网络中使用 torch.nn.GELU 模块,你可以简单地导入它并将其添加到模型的层中。以下是一个示例:

python 复制代码
import torch
import torch.nn as nn

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.layer1 = nn.Linear(10, 20)
        self.gelu = nn.GELU()
        self.layer2 = nn.Linear(20, 10)

    def forward(self, x):
        x = self.layer1(x)
        x = self.gelu(x)
        x = self.layer2(x)
        return x

# 创建模型实例
model = MyModel()

# 创建一个随机输入张量
input_tensor = torch.randn(5, 10)

# 前向传播
output_tensor = model(input_tensor)
print(output_tensor)

解释

  • nn.Linear(10, 20): 一个线性层,输入大小为 10,输出大小为 20。
  • nn.GELU(): GELU 激活函数,应用于第一个线性层的输出。
  • nn.Linear(20, 10): 另一个线性层,输入大小为 20,输出大小为 10。

GELU 激活函数用于在模型中引入非线性,这有助于模型学习更复杂的模式。

GELU 的优点

  • 平滑近似: GELU 提供了一种比 ReLU 更平滑的神经元激活近似,这可以帮助训练的稳定性和收敛性。
  • 概率解释: 通过结合累积分布函数,GELU 以更有原则的方式考虑激活的概率,这可能在某些模型(尤其是自然语言处理 (NLP) 和计算机视觉 (CV) 中)带来更好的性能。

通过在你的 PyTorch 模型中使用 torch.nn.GELU,你可以利用这些优点来提高神经网络的性能和训练动态。

GELU(Gaussian Error Linear Unit)激活函数是在论文《Gaussian Error Linear Units (GELUs)》中提出的。这篇论文由 Dan Hendrycks 和 Kevin Gimpel 于 2016 年发表。

以下是使用 Python 和 Matplotlib 绘制 GELU 激活函数的函数曲线的代码:

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import erf

# 定义 GELU 激活函数
def gelu(x):
    return 0.5 * x * (1 + erf(x / np.sqrt(2)))

# 生成 x 轴数据
x = np.linspace(-3, 3, 400)
# 计算 y 轴数据
y = gelu(x)

# 绘制 GELU 激活函数曲线
plt.figure(figsize=(8, 6))
plt.plot(x, y, label='GELU', color='blue')
plt.title('GELU Activation Function')
plt.xlabel('Input')
plt.ylabel('Output')
plt.legend()
plt.grid(True)
plt.show()

运行上述代码将生成一个展示 GELU 激活函数的曲线图:

优点:

  • 平滑的近似:

GELU 提供了比 ReLU 更平滑的激活函数,这有助于神经网络更稳定地训练并提高收敛性。ReLU 在负数区间完全关闭,而 GELU 会根据输入值的大小逐渐激活神经元。

  • 概率解释:

GELU 将标准正态分布的累积分布函数(CDF)结合到激活函数中,以一种更有原则的方式处理激活的概率。这种方法考虑了输入值的分布,使得神经网络可以更有效地处理不同范围的输入。

  • 更好的性能:

由于 GELU 函数的平滑性和概率解释,它在处理某些任务时(尤其是在自然语言处理 (NLP) 和计算机视觉 (CV) 任务中)表现出色。在这些任务中,GELU 激活函数可以提高模型的性能。

  • 渐进式变化:

相对于 ReLU 的硬边界(即大于零输出本身,小于零输出零),GELU 提供了一种更加渐进式的激活方式,使得小负值输入仍然能够产生一定的激活效果,这在某些情况下可以提高模型的表现。

GELU 反向传播的公式

GELU 激活函数的公式

GELU 激活函数定义为:
GELU ( x ) = x ⋅ Φ ( x ) \text{GELU}(x) = x \cdot \Phi(x) GELU(x)=x⋅Φ(x)

其中 Φ ( x ) \Phi(x) Φ(x) 是标准正态分布的累积分布函数。 Φ ( x ) \Phi(x) Φ(x) 的表达式为:
Φ ( x ) = 1 2 ( 1 + erf ( x 2 ) ) \Phi(x) = \frac{1}{2} \left( 1 + \text{erf}\left( \frac{x}{\sqrt{2}} \right) \right) Φ(x)=21(1+erf(2 x))

GELU 的梯度公式

为了求 GELU 的梯度,我们需要对其进行求导。这里 erf ( x ) \text{erf}(x) erf(x) 是误差函数,定义为:
erf ( x ) = 2 π ∫ 0 x e − t 2   d t \text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt erf(x)=π 2∫0xe−t2dt

求导过程

GELU 的导数可以表示为:
d d x GELU ( x ) = d d x ( x ⋅ Φ ( x ) ) \frac{d}{dx} \text{GELU}(x) = \frac{d}{dx} \left( x \cdot \Phi(x) \right) dxdGELU(x)=dxd(x⋅Φ(x))

根据乘积法则:
d d x ( x ⋅ Φ ( x ) ) = Φ ( x ) + x ⋅ d d x Φ ( x ) \frac{d}{dx} \left( x \cdot \Phi(x) \right) = \Phi(x) + x \cdot \frac{d}{dx} \Phi(x) dxd(x⋅Φ(x))=Φ(x)+x⋅dxdΦ(x)

我们需要对 Φ ( x ) \Phi(x) Φ(x) 进行求导:
d d x Φ ( x ) = d d x ( 1 2 ( 1 + erf ( x 2 ) ) ) \frac{d}{dx} \Phi(x) = \frac{d}{dx} \left( \frac{1}{2} \left( 1 + \text{erf}\left( \frac{x}{\sqrt{2}} \right) \right) \right) dxdΦ(x)=dxd(21(1+erf(2 x)))

由于常数部分导数为零,我们仅对 erf ( x 2 ) \text{erf}\left( \frac{x}{\sqrt{2}} \right) erf(2 x) 进行求导:
d d x erf ( x 2 ) = 2 π e − ( x 2 ) 2 ⋅ 1 2 = e − x 2 / 2 2 π \frac{d}{dx} \text{erf}\left( \frac{x}{\sqrt{2}} \right) = \frac{2}{\sqrt{\pi}} e^{-\left( \frac{x}{\sqrt{2}} \right)^2} \cdot \frac{1}{\sqrt{2}} = \frac{e^{-x^2/2}}{\sqrt{2\pi}} dxderf(2 x)=π 2e−(2 x)2⋅2 1=2π e−x2/2

所以:
d d x Φ ( x ) = 1 2 π e − x 2 / 2 \frac{d}{dx} \Phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dxdΦ(x)=2π 1e−x2/2

将其代入前面的公式,我们得到:
d d x GELU ( x ) = Φ ( x ) + x ⋅ 1 2 π e − x 2 / 2 \frac{d}{dx} \text{GELU}(x) = \Phi(x) + x \cdot \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dxdGELU(x)=Φ(x)+x⋅2π 1e−x2/2

因此,GELU 的梯度为:
d d x GELU ( x ) = 1 2 ( 1 + erf ( x 2 ) ) + x ⋅ 1 2 π e − x 2 / 2 \frac{d}{dx} \text{GELU}(x) = \frac{1}{2} \left( 1 + \text{erf}\left( \frac{x}{\sqrt{2}} \right) \right) + x \cdot \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dxdGELU(x)=21(1+erf(2 x))+x⋅2π 1e−x2/2

Python 代码绘制 GELU 梯度曲线

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import erf, erfc

# 定义 GELU 激活函数
def gelu(x):
    return 0.5 * x * (1 + erf(x / np.sqrt(2)))

# 定义 GELU 激活函数的导数
def gelu_derivative(x):
    return 0.5 * (1 + erf(x / np.sqrt(2))) + (x * np.exp(-x**2 / 2)) / np.sqrt(2 * np.pi)

# 生成 x 轴数据
x = np.linspace(-3, 3, 400)
# 计算 y 轴数据
y = gelu(x)
# 计算 y' 轴数据
dy = gelu_derivative(x)

# 绘制 GELU 激活函数和梯度曲线
plt.figure(figsize=(8, 6))
plt.plot(x, y, label='GELU', color='blue')
plt.plot(x, dy, label='GELU Derivative', color='red', linestyle='dashed')
plt.title('GELU Activation Function and Its Derivative')
plt.xlabel('Input')
plt.ylabel('Output')
plt.legend()
plt.grid(True)
plt.show()

运行这段代码将生成一个展示 GELU 激活函数及其梯度的曲线图,有助于直观地理解 GELU 在反向传播中的行为:

相关推荐
好喜欢吃红柚子4 分钟前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn
小馒头学python8 分钟前
机器学习是什么?AIGC又是什么?机器学习与AIGC未来科技的双引擎
人工智能·python·机器学习
神奇夜光杯18 分钟前
Python酷库之旅-第三方库Pandas(202)
开发语言·人工智能·python·excel·pandas·标准库及第三方库·学习与成长
正义的彬彬侠20 分钟前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
Debroon30 分钟前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能
羊小猪~~37 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
AI小杨38 分钟前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测
晨曦_子画42 分钟前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin
道可云44 分钟前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
人工智能培训咨询叶梓1 小时前
探索开放资源上指令微调语言模型的现状
人工智能·语言模型·自然语言处理·性能优化·调优·大模型微调·指令微调