【代码随想录——动态规划——第五周——打家劫舍】

1.打家劫舍

go 复制代码
func rob(nums []int) int {
    n := len(nums)
    dp := make([]int, n+1)
    //初始化
    dp[1] = nums[0]
    for i:=2;i<=n;i++ {
        dp[i] = max(dp[i-1],dp[i-2]+nums[i-1])
    }
    return dp[n]
}

func max(a,b int)int{
    if a>b{
        return a
    }
    return b
}

2.打家劫舍II

区别:区别在于围成了一个圈。可能会出现偷了最后一个,又偷了第一个的情况。

如何避免这种情况:将第一个房子去掉,偷一遍;将最后一个房子去掉,偷一遍

3.打家劫舍III

区别:在树结构上进行。被称为树形DP

3.1 暴力递归

使用后续遍历,由于存在大量的重复计算,会导致超时问题。

go 复制代码
func rob(root *TreeNode) int {
    if root==nil{
        return 0
    }
    // 如果当前节点的左右子节点都为空,则返回当前的可偷窃值
    if root.Left==nil && root.Right==nil{
        return root.Val
    }
    // 行窃当前节点
    val1 := root.Val
    if root.Left!=nil {
        val1 += rob(root.Left.Left) + rob(root.Left.Right)
    }
    if root.Right!=nil {
        val1 += rob(root.Right.Left) + rob(root.Right.Right)
    }
    // 不行窃当前节点,代表可以行窃当前节点的儿子节点
    val2 := rob(root.Left) + rob(root.Right)
    return max(val1,val2)
}

3.2 记忆化递推

用map来记住路上的结果,但貌似还是过不了测试用例122。可能是leetcode上的测试用例更新了

go 复制代码
var (
	umap map[*TreeNode]int
)

func rob(root *TreeNode) int {
	umap = make(map[*TreeNode]int)
	
	return robb(root)
}

func robb(root *TreeNode) int {
	if root == nil {
		return 0
	}
	// 如果当前节点的左右子节点都为空,则返回当前的可偷窃值
	if root.Left == nil && root.Right == nil {
		return root.Val
	}
	if val,ok := umap[root];ok{
		return val
	}
	// 行窃当前节点
	val1 := root.Val
	if root.Left != nil {
		val1 += rob(root.Left.Left) + rob(root.Left.Right)
	}
	if root.Right != nil {
		val1 += rob(root.Right.Left) + rob(root.Right.Right)
	}
	// 不行窃当前节点,代表可以行窃当前节点的儿子节点
	val2 := rob(root.Left) + rob(root.Right)
    umap[root] = max(val1, val2);
	return max(val1, val2)
}

3.3 动态规划的解法

融合了递归三部曲和动态规划五部曲

go 复制代码
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func rob(root *TreeNode) int {
    res := robTree(root)
    return max(res[0],res[1])
}


func robTree(cur *TreeNode) []int{
    if cur == nil {
		return []int{0, 0}
	}
    // 后序遍历
    left := robTree(cur.Left)
	right := robTree(cur.Right)
    // 注意顺序:0:不偷,1:去偷
    // 考虑去偷当前的屋子,则该屋子的子节点均不能偷
	robCur := cur.Val + left[0] + right[0]
    // 考虑不去偷当前的屋子,则可以尝试偷子节点
	notRobCur := max(left[0], left[1]) + max(right[0], right[1])
    // 返回当前节点的不偷和偷的情况
    return []int{notRobCur, robCur}
}
相关推荐
能工智人小辰16 分钟前
Codeforces Round 509 (Div. 2) C. Coffee Break
c语言·c++·算法
kingmax5421200817 分钟前
CCF GESP202503 Grade4-B4263 [GESP202503 四级] 荒地开垦
数据结构·算法
岁忧22 分钟前
LeetCode 高频 SQL 50 题(基础版)之 【高级字符串函数 / 正则表达式 / 子句】· 上
sql·算法·leetcode
eachin_z1 小时前
力扣刷题(第四十九天)
算法·leetcode·职场和发展
闻缺陷则喜何志丹1 小时前
【强连通分量 缩点 拓扑排序】P3387 【模板】缩点|普及+
c++·算法·拓扑排序·洛谷·强连通分量·缩点
机器学习之心2 小时前
机器学习用于算法交易(Matlab实现)
算法·机器学习·matlab
AL流云。2 小时前
【优选算法】C++滑动窗口
数据结构·c++·算法
qq_429879673 小时前
省略号和可变参数模板
开发语言·c++·算法
飞川撸码4 小时前
【LeetCode 热题100】网格路径类 DP 系列题:不同路径 & 最小路径和(力扣62 / 64 )(Go语言版)
算法·leetcode·golang·动态规划
Neil今天也要学习4 小时前
永磁同步电机参数辨识算法--IPMSM拓展卡尔曼滤波全参数辨识
单片机·嵌入式硬件·算法