【代码随想录——动态规划——第五周——打家劫舍】

1.打家劫舍

go 复制代码
func rob(nums []int) int {
    n := len(nums)
    dp := make([]int, n+1)
    //初始化
    dp[1] = nums[0]
    for i:=2;i<=n;i++ {
        dp[i] = max(dp[i-1],dp[i-2]+nums[i-1])
    }
    return dp[n]
}

func max(a,b int)int{
    if a>b{
        return a
    }
    return b
}

2.打家劫舍II

区别:区别在于围成了一个圈。可能会出现偷了最后一个,又偷了第一个的情况。

如何避免这种情况:将第一个房子去掉,偷一遍;将最后一个房子去掉,偷一遍

3.打家劫舍III

区别:在树结构上进行。被称为树形DP

3.1 暴力递归

使用后续遍历,由于存在大量的重复计算,会导致超时问题。

go 复制代码
func rob(root *TreeNode) int {
    if root==nil{
        return 0
    }
    // 如果当前节点的左右子节点都为空,则返回当前的可偷窃值
    if root.Left==nil && root.Right==nil{
        return root.Val
    }
    // 行窃当前节点
    val1 := root.Val
    if root.Left!=nil {
        val1 += rob(root.Left.Left) + rob(root.Left.Right)
    }
    if root.Right!=nil {
        val1 += rob(root.Right.Left) + rob(root.Right.Right)
    }
    // 不行窃当前节点,代表可以行窃当前节点的儿子节点
    val2 := rob(root.Left) + rob(root.Right)
    return max(val1,val2)
}

3.2 记忆化递推

用map来记住路上的结果,但貌似还是过不了测试用例122。可能是leetcode上的测试用例更新了

go 复制代码
var (
	umap map[*TreeNode]int
)

func rob(root *TreeNode) int {
	umap = make(map[*TreeNode]int)
	
	return robb(root)
}

func robb(root *TreeNode) int {
	if root == nil {
		return 0
	}
	// 如果当前节点的左右子节点都为空,则返回当前的可偷窃值
	if root.Left == nil && root.Right == nil {
		return root.Val
	}
	if val,ok := umap[root];ok{
		return val
	}
	// 行窃当前节点
	val1 := root.Val
	if root.Left != nil {
		val1 += rob(root.Left.Left) + rob(root.Left.Right)
	}
	if root.Right != nil {
		val1 += rob(root.Right.Left) + rob(root.Right.Right)
	}
	// 不行窃当前节点,代表可以行窃当前节点的儿子节点
	val2 := rob(root.Left) + rob(root.Right)
    umap[root] = max(val1, val2);
	return max(val1, val2)
}

3.3 动态规划的解法

融合了递归三部曲和动态规划五部曲

go 复制代码
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func rob(root *TreeNode) int {
    res := robTree(root)
    return max(res[0],res[1])
}


func robTree(cur *TreeNode) []int{
    if cur == nil {
		return []int{0, 0}
	}
    // 后序遍历
    left := robTree(cur.Left)
	right := robTree(cur.Right)
    // 注意顺序:0:不偷,1:去偷
    // 考虑去偷当前的屋子,则该屋子的子节点均不能偷
	robCur := cur.Val + left[0] + right[0]
    // 考虑不去偷当前的屋子,则可以尝试偷子节点
	notRobCur := max(left[0], left[1]) + max(right[0], right[1])
    // 返回当前节点的不偷和偷的情况
    return []int{notRobCur, robCur}
}
相关推荐
随意起个昵称17 分钟前
【双指针】供暖器
算法
倒霉蛋小马20 分钟前
最小二乘法拟合直线,用线性回归法、梯度下降法实现
算法·最小二乘法·直线
codists44 分钟前
《算法导论(第4版)》阅读笔记:p82-p82
算法
埃菲尔铁塔_CV算法1 小时前
深度学习驱动下的目标检测技术:原理、算法与应用创新
深度学习·算法·目标检测
float_com1 小时前
【背包dp-----分组背包】------(标准的分组背包【可以不装满的 最大价值】)
算法·动态规划
丶Darling.2 小时前
Day119 | 灵神 | 二叉树 | 二叉树的最近共公共祖先
数据结构·c++·算法·二叉树
L_cl3 小时前
【Python 算法零基础 3.递推】
算法
int型码农3 小时前
数据结构第七章(四)-B树和B+树
数据结构·b树·算法·b+树
先做个垃圾出来………4 小时前
汉明距离(Hamming Distance)
开发语言·python·算法
小羊在奋斗4 小时前
【LeetCode 热题 100】二叉树的最大深度 / 翻转二叉树 / 二叉树的直径 / 验证二叉搜索树
算法·leetcode·职场和发展