数据仓库的实际应用示例-广告投放平台为例

数据仓库的数据分层通常包括以下几层:

  1. ODS层:存放原始数据,如日志数据和结构化数据。
  2. DWD层:进行数据清洗、脱敏、维度退化和格式转换。
  3. DWS层:用于宽表聚合值和主题加工。
  4. ADS层:面向业务定制的应用数据层。
  5. DIM层:一致性维度建模,包括低基数和高基数维度数据。

为了更好地理解数据仓库的各个方面,我们以一个广告投放平台为例,详细说明各个层级的数据处理和使用,并附带一些代码示例。

1. ODS层

ODS(Operational Data Store)层存放的是原始数据。比如,广告点击日志数据。

示例数据

json 复制代码
{
    "log_id": "12345",
    "user_id": "67890",
    "ad_id": "54321",
    "timestamp": "2023-06-21T12:00:00Z",
    "action": "click",
    "cost": 0.5
}
2. DWD层

DWD(Data Warehouse Detail)层进行数据清洗、脱敏、维度退化和格式转换。

数据清洗代码示例(使用PySpark):

python 复制代码
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, from_unixtime

# 创建SparkSession
spark = SparkSession.builder.appName("DWD Layer").getOrCreate()

# 读取ODS层数据
ods_data = spark.read.json("hdfs://path/to/ods/data")

# 数据清洗
dwd_data = ods_data.withColumn("timestamp", from_unixtime(col("timestamp")))

# 写入DWD层
dwd_data.write.mode("overwrite").json("hdfs://path/to/dwd/data")
3. DWS层

DWS(Data Warehouse Service)层用于宽表聚合和主题加工。

宽表聚合代码示例

python 复制代码
from pyspark.sql.functions import sum

# 聚合用户点击行为数据
dws_data = dwd_data.groupBy("user_id").agg(sum("cost").alias("total_cost"))

# 写入DWS层
dws_data.write.mode("overwrite").json("hdfs://path/to/dws/data")
4. ADS层

ADS(Application Data Store)层面向业务定制的应用数据层。比如,计算每个广告的总点击次数。

业务定制数据处理代码示例

python 复制代码
from pyspark.sql.functions import count

# 计算每个广告的总点击次数
ads_data = dwd_data.groupBy("ad_id").agg(count("action").alias("click_count"))

# 写入ADS层
ads_data.write.mode("overwrite").json("hdfs://path/to/ads/data")
5. DIM层

DIM(Dimension)层用于一致性维度建模。

维度建模示例

python 复制代码
# 读取广告信息维度数据
ad_info = spark.read.json("hdfs://path/to/dim/ad_info")

# 读取ADS层数据
ads_data = spark.read.json("hdfs://path/to/ads/data")

# 关联广告信息维度数据
final_data = ads_data.join(ad_info, "ad_id")

# 写入最终数据
final_data.write.mode("overwrite").json("hdfs://path/to/final/data")

数据指标示例

数据指标分为原子指标、复合指标和派生指标。下面以广告点击数据为例说明各类指标的计算。

原子指标

python 复制代码
# 原子指标:广告点击次数
ad_clicks = dwd_data.filter(col("action") == "click").count()
print(f"广告点击次数: {ad_clicks}")

复合指标

python 复制代码
# 复合指标:点击率
total_impressions = dwd_data.filter(col("action") == "impression").count()
click_through_rate = ad_clicks / total_impressions
print(f"点击率: {click_through_rate}")

派生指标

python 复制代码
# 派生指标:按天计算的点击次数
daily_clicks = dwd_data.filter(col("action") == "click").groupBy("date").count()
daily_clicks.show()

结论

通过以上示例代码,我们可以看到数据仓库各个层级的数据处理流程,以及如何定义和计算各种数据指标。这些规范和方法不仅帮助企业构建高效、可维护的数据仓库系统,还能为业务决策提供有力的数据支持。

希望这个简单的示例能够帮助读者更好地理解数据仓库的设计和应用。

相关推荐
l1t24 分钟前
DeepSeek辅助总结postgresql wiki提供的数独求解器
数据库·sql·postgresql
万行33 分钟前
SQL进阶&索引篇
开发语言·数据库·人工智能·sql
外参财观1 小时前
从浏览器到“超级眼”:夸克的突围战
大数据
BYSJMG2 小时前
计算机毕设选题推荐:基于大数据的癌症数据分析与可视化系统
大数据·vue.js·python·数据挖掘·数据分析·课程设计
山岚的运维笔记2 小时前
SQL Server笔记 -- 第13章:IF...ELSE
数据库·笔记·sql·microsoft·sqlserver
petrel20152 小时前
【Spark 核心内参】2026.1:JIRA vs GitHub Issues 治理模式大讨论与 4.2.0 预览版首发
大数据·spark
闻哥2 小时前
深入理解 ES 词库与 Lucene 倒排索引底层实现
java·大数据·jvm·elasticsearch·面试·springboot·lucene
YIN_尹2 小时前
【MySQL】数据分析双剑客:聚合函数 与 group by子句的完美搭配
mysql·性能优化·数据分析
酉鬼女又兒2 小时前
SQL23 统计每个学校各难度的用户平均刷题数
数据库·sql·算法
TracyCoder1232 小时前
全面解析:Elasticsearch 性能优化指南
大数据·elasticsearch·性能优化