神经网络学习5-非线性激活

非线性激活,即

这是最常用的

inplace=True 原位操作 改变变量本身的值,就是是否输入时若原本有值,是否更换

该函数就是表示:输入小于零时输出0,大于零时保持不变

代码如下:

c 复制代码
import torch
from torch import  nn
from torch.nn import ReLU

input=torch.tensor([[1,-0.5],[-1,3]])
input=torch.reshape(input,(-1,1,2,2))
print(input.shape)
class Tudui(nn.Module):
    def __init__(self) -> None:
        super(Tudui, self).__init__()
        self.relu1=ReLU()

    def forward(self,input):
        output=self.relu1(input)
        return output

tudui=Tudui()
output=tudui(input)
print(output)

非线性激活的作用就是引入非线性,

非线性激活函数(Non-linear Activation Function)是神经网络中的一个重要组成部分。它们被应用于每个神经元的输出,以引入非线性特性。具体来说,非线性激活函数将神经元的线性组合(即加权和加上偏置)转化为非线性输出。

引入非线性特性:没有非线性激活函数的神经网络只能表达线性关系,无论网络有多少层。通过引入非线性,神经网络可以处理复杂的非线性问题,从而能够逼近任何连续的函数。

增加模型的表达能力:非线性激活函数使得多层网络具有更强的表达能力,可以拟合复杂的数据分布,解决复杂的任务,如图像识别、自然语言处理等。

使得深度学习变得可能:深度神经网络中的层数很多,如果每一层都只是线性的叠加,那么无论多少层,最终的模型还是一个线性模型。非线性激活函数使得每一层的输出变得不同,从而使深度学习成为可能。

c 复制代码
import torch
import torchvision
from torch import  nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

data_transform=torchvision.transforms.Compose(
    [torchvision.transforms.ToTensor()]
)
test_data=torchvision.datasets.CIFAR10('./dataset',train=False,transform=data_transform,download=True)
dataloader=DataLoader(dataset=test_data,batch_size=64)
class Tudui(nn.Module):
    def __init__(self) -> None:
        super(Tudui, self).__init__()
        self.relu1=ReLU()
        self.sigmoid1=Sigmoid()

    def forward(self,input):
        output=self.sigmoid1(input)
        return output

writer=SummaryWriter('rules')

tudui=Tudui()
step=0
for data in dataloader:
    imgs,targets=data
    writer.add_images('input',imgs,step)
    output=tudui(imgs)
    writer.add_images('output', output, step)
    step=step+1

writer.close()
相关推荐
垂杨有暮鸦⊙_⊙19 分钟前
阅读《先进引信技术的发展与展望》识别和控制部分_笔记
笔记·学习
南门听露21 分钟前
无监督跨域目标检测的语义一致性知识转移
人工智能·目标检测·计算机视觉
夏沫の梦21 分钟前
常见LLM大模型概览与详解
人工智能·深度学习·chatgpt·llama
WeeJot嵌入式36 分钟前
线性代数与数据挖掘:人工智能中的核心工具
人工智能·线性代数·数据挖掘
埋头编程~1 小时前
【C++】踏上C++学习之旅(十):深入“类和对象“世界,掌握编程黄金法则(五)(最终篇,内含初始化列表、静态成员、友元以及内部类等等)
java·c++·学习
AI小白龙*2 小时前
Windows环境下搭建Qwen开发环境
人工智能·windows·自然语言处理·llm·llama·ai大模型·ollama
cetcht88882 小时前
光伏电站项目-视频监控、微气象及安全警卫系统
运维·人工智能·物联网
惯师科技2 小时前
TDK推出第二代用于汽车安全应用的6轴IMU
人工智能·安全·机器人·汽车·imu
世伟爱吗喽3 小时前
NUXT3学习日记四(路由中间件、导航守卫)
学习
HPC_fac130520678163 小时前
科研深度学习:如何精选GPU以优化服务器性能
服务器·人工智能·深度学习·神经网络·机器学习·数据挖掘·gpu算力