神经网络学习5-非线性激活

非线性激活,即

这是最常用的

inplace=True 原位操作 改变变量本身的值,就是是否输入时若原本有值,是否更换

该函数就是表示:输入小于零时输出0,大于零时保持不变

代码如下:

c 复制代码
import torch
from torch import  nn
from torch.nn import ReLU

input=torch.tensor([[1,-0.5],[-1,3]])
input=torch.reshape(input,(-1,1,2,2))
print(input.shape)
class Tudui(nn.Module):
    def __init__(self) -> None:
        super(Tudui, self).__init__()
        self.relu1=ReLU()

    def forward(self,input):
        output=self.relu1(input)
        return output

tudui=Tudui()
output=tudui(input)
print(output)

非线性激活的作用就是引入非线性,

非线性激活函数(Non-linear Activation Function)是神经网络中的一个重要组成部分。它们被应用于每个神经元的输出,以引入非线性特性。具体来说,非线性激活函数将神经元的线性组合(即加权和加上偏置)转化为非线性输出。

引入非线性特性:没有非线性激活函数的神经网络只能表达线性关系,无论网络有多少层。通过引入非线性,神经网络可以处理复杂的非线性问题,从而能够逼近任何连续的函数。

增加模型的表达能力:非线性激活函数使得多层网络具有更强的表达能力,可以拟合复杂的数据分布,解决复杂的任务,如图像识别、自然语言处理等。

使得深度学习变得可能:深度神经网络中的层数很多,如果每一层都只是线性的叠加,那么无论多少层,最终的模型还是一个线性模型。非线性激活函数使得每一层的输出变得不同,从而使深度学习成为可能。

c 复制代码
import torch
import torchvision
from torch import  nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

data_transform=torchvision.transforms.Compose(
    [torchvision.transforms.ToTensor()]
)
test_data=torchvision.datasets.CIFAR10('./dataset',train=False,transform=data_transform,download=True)
dataloader=DataLoader(dataset=test_data,batch_size=64)
class Tudui(nn.Module):
    def __init__(self) -> None:
        super(Tudui, self).__init__()
        self.relu1=ReLU()
        self.sigmoid1=Sigmoid()

    def forward(self,input):
        output=self.sigmoid1(input)
        return output

writer=SummaryWriter('rules')

tudui=Tudui()
step=0
for data in dataloader:
    imgs,targets=data
    writer.add_images('input',imgs,step)
    output=tudui(imgs)
    writer.add_images('output', output, step)
    step=step+1

writer.close()
相关推荐
序属秋秋秋14 分钟前
我的创作纪念日——《惊变256天》
学习·程序人生·学习方法
羽凌寒1 小时前
图像对比度调整(局域拉普拉斯滤波)
人工智能·计算机视觉
大模型铲屎官1 小时前
【Python-Day 14】玩转Python字典(上篇):从零开始学习创建、访问与操作
开发语言·人工智能·pytorch·python·深度学习·大模型·字典
关于不上作者榜就原神启动那件事1 小时前
git版本控制学习
git·学习
LuckyLay1 小时前
Vue百日学习计划Day9-15天详细计划-Gemini版
前端·vue.js·学习
一点.点1 小时前
计算机视觉的简单介绍
人工智能·深度学习·计算机视觉
量子-Alex1 小时前
【目标检测】【Transformer】Swin Transformer
人工智能·目标检测·transformer
GISer_Jing1 小时前
AI知识梳理——RAG、Agent、ReAct、LangChain、LangGraph、MCP、Function Calling、JSON-RPC
人工智能
Stara05112 小时前
基于多头自注意力机制(MHSA)增强的YOLOv11主干网络—面向高精度目标检测的结构创新与性能优化
人工智能·python·深度学习·神经网络·目标检测·计算机视觉·yolov11
YuSun_WK2 小时前
目标跟踪相关综述文章
人工智能·计算机视觉·目标跟踪