神经网络学习5-非线性激活

非线性激活,即

这是最常用的

inplace=True 原位操作 改变变量本身的值,就是是否输入时若原本有值,是否更换

该函数就是表示:输入小于零时输出0,大于零时保持不变

代码如下:

c 复制代码
import torch
from torch import  nn
from torch.nn import ReLU

input=torch.tensor([[1,-0.5],[-1,3]])
input=torch.reshape(input,(-1,1,2,2))
print(input.shape)
class Tudui(nn.Module):
    def __init__(self) -> None:
        super(Tudui, self).__init__()
        self.relu1=ReLU()

    def forward(self,input):
        output=self.relu1(input)
        return output

tudui=Tudui()
output=tudui(input)
print(output)

非线性激活的作用就是引入非线性,

非线性激活函数(Non-linear Activation Function)是神经网络中的一个重要组成部分。它们被应用于每个神经元的输出,以引入非线性特性。具体来说,非线性激活函数将神经元的线性组合(即加权和加上偏置)转化为非线性输出。

引入非线性特性:没有非线性激活函数的神经网络只能表达线性关系,无论网络有多少层。通过引入非线性,神经网络可以处理复杂的非线性问题,从而能够逼近任何连续的函数。

增加模型的表达能力:非线性激活函数使得多层网络具有更强的表达能力,可以拟合复杂的数据分布,解决复杂的任务,如图像识别、自然语言处理等。

使得深度学习变得可能:深度神经网络中的层数很多,如果每一层都只是线性的叠加,那么无论多少层,最终的模型还是一个线性模型。非线性激活函数使得每一层的输出变得不同,从而使深度学习成为可能。

c 复制代码
import torch
import torchvision
from torch import  nn
from torch.nn import ReLU, Sigmoid
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

data_transform=torchvision.transforms.Compose(
    [torchvision.transforms.ToTensor()]
)
test_data=torchvision.datasets.CIFAR10('./dataset',train=False,transform=data_transform,download=True)
dataloader=DataLoader(dataset=test_data,batch_size=64)
class Tudui(nn.Module):
    def __init__(self) -> None:
        super(Tudui, self).__init__()
        self.relu1=ReLU()
        self.sigmoid1=Sigmoid()

    def forward(self,input):
        output=self.sigmoid1(input)
        return output

writer=SummaryWriter('rules')

tudui=Tudui()
step=0
for data in dataloader:
    imgs,targets=data
    writer.add_images('input',imgs,step)
    output=tudui(imgs)
    writer.add_images('output', output, step)
    step=step+1

writer.close()
相关推荐
doubao361 天前
如何有效降低AIGC生成内容被识别的概率?
人工智能·深度学习·自然语言处理·aigc·ai写作
SEO_juper1 天前
AEO终极指南:步步为营,提升内容的AI可见性
人工智能·ai·seo·数字营销·aeo
蒙奇D索大1 天前
【算法】递归算法的深度实践:从布尔运算到二叉树剪枝的DFS之旅
笔记·学习·算法·leetcode·深度优先·剪枝
机器之心1 天前
李飞飞最新长文:AI的下一个十年——构建真正具备空间智能的机器
人工智能·openai
机器之心1 天前
豆包编程模型来了,我们用四个关卡考了考它!
人工智能·openai
阿里云大数据AI技术1 天前
让 ETL 更懂语义:DataWorks 支持数据集成 AI 辅助处理能力
人工智能·阿里云·dataworks·ai辅助
hoiii1871 天前
基于交替方向乘子法(ADMM)的RPCA MATLAB实现
人工智能·算法·matlab
Elastic 中国社区官方博客1 天前
Elasticsearch:如何为 Elastic Stack 部署 E5 模型 - 下载及隔离环境
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
xier_ran1 天前
深度学习:神经网络中的参数和超参数
人工智能·深度学习
8Qi81 天前
伪装图像生成之——GAN与Diffusion
人工智能·深度学习·神经网络·生成对抗网络·图像生成·伪装图像生成