【FAS】《Application of machine learning to face Anti-spoofing detection》

文章目录

原文

李莉.反欺骗人脸活体图像的机器学习方法研究[D].广东工业学,2020.DOI:10.27029/d.cnki.ggdgu.2020.001204.

相关工作

一、基于手工特征的人脸活体检测方法

(1)基于图像纹理特征


(2)基于多光谱特征


(3)基于运动信息

由于伪造欺骗人脸模仿真实人脸运动时,人脸会连带身后的背景区域一同运动,背景区域也会被识别。当一个点在运动时,对应图像上相同或位置的光源也在移动,这种基于图像亮度运动特征的提取方法便是光流法。真实人脸和伪造的欺骗二维人脸图像在运动模式上是不同的。真实人脸做出动作时,脸部不同运动产生不同的光流。而伪造的欺骗二维人脸图像则几乎无变化


二、基于深度学习的人脸活体检测方法

三、基于融合特征的人脸活体检测方法

空间金字塔编码微纹理(SPMT)特征描述符

方法

静态 Gabor 小波和动态 LBP 的融合特征

传统:提取 Gabor 小波特征和动态 LBP 特征 + SVM

数据集

结果

基于 GAN 的数据增强人脸活体检测方法

时常会造成训练时模式崩溃(collapse mode),产生的结果不具备多样性,比较单一

GAN------DCGAN 生成难样本加入训练集 + SVM


半监督学习用于图像修复的人脸活体检测

半监督(利用图像修复的方法)

引入基于 GAN 的图像修复模型

网络结构分为生成模型 用于修复图像;局部判别器 负责判别修复图像的清晰度和局部一致性,全局判别器负责判别修复图像与原图像的匹配程度和全局一致性。训练中,网络模型一方面修复掩码或缺失的图像,一方面通过全局判别器进行真伪人脸图

点评

GAN 用于图像修复,生成与活检的结合方式

★★★


相关推荐
zskj_zhyl30 分钟前
家庭健康能量站:微高压氧舱结合艾灸机器人,智享双重养生SPA
人工智能·科技·安全·机器人
朗迪锋32 分钟前
数字孪生 :提高制造生产力的智能方法
大数据·人工智能·制造
网安INF1 小时前
【论文阅读】-《HopSkipJumpAttack: A Query-Efficient Decision-Based Attack》
论文阅读·人工智能·深度学习·网络安全·对抗攻击
l1t2 小时前
利用DeepSeek辅助WPS电子表格ET格式分析
人工智能·python·wps·插件·duckdb
plusplus1682 小时前
边缘智能实战手册:攻克IoT应用三大挑战的AI战术
人工智能·物联网
果粒橙_LGC3 小时前
论文阅读系列(一)Qwen-Image Technical Report
论文阅读·人工智能·学习
雷达学弱狗3 小时前
backward怎么计算的是torch.tensor(2.0, requires_grad=True)变量的梯度
人工智能·pytorch·深度学习
Seeklike3 小时前
diffuxers学习--AutoPipeline
人工智能·python·stable diffusion·diffusers
CoovallyAIHub3 小时前
为高空安全上双保险!无人机AI护航,YOLOv5秒判安全带,守护施工生命线
深度学习·算法·计算机视觉
杨过过儿3 小时前
【Task01】:简介与环境配置(第一章1、2节)
人工智能·自然语言处理