【FAS】《Application of machine learning to face Anti-spoofing detection》

文章目录

原文

李莉.反欺骗人脸活体图像的机器学习方法研究[D].广东工业学,2020.DOI:10.27029/d.cnki.ggdgu.2020.001204.

相关工作

一、基于手工特征的人脸活体检测方法

(1)基于图像纹理特征


(2)基于多光谱特征


(3)基于运动信息

由于伪造欺骗人脸模仿真实人脸运动时,人脸会连带身后的背景区域一同运动,背景区域也会被识别。当一个点在运动时,对应图像上相同或位置的光源也在移动,这种基于图像亮度运动特征的提取方法便是光流法。真实人脸和伪造的欺骗二维人脸图像在运动模式上是不同的。真实人脸做出动作时,脸部不同运动产生不同的光流。而伪造的欺骗二维人脸图像则几乎无变化


二、基于深度学习的人脸活体检测方法

三、基于融合特征的人脸活体检测方法

空间金字塔编码微纹理(SPMT)特征描述符

方法

静态 Gabor 小波和动态 LBP 的融合特征

传统:提取 Gabor 小波特征和动态 LBP 特征 + SVM

数据集

结果

基于 GAN 的数据增强人脸活体检测方法

时常会造成训练时模式崩溃(collapse mode),产生的结果不具备多样性,比较单一

GAN------DCGAN 生成难样本加入训练集 + SVM


半监督学习用于图像修复的人脸活体检测

半监督(利用图像修复的方法)

引入基于 GAN 的图像修复模型

网络结构分为生成模型 用于修复图像;局部判别器 负责判别修复图像的清晰度和局部一致性,全局判别器负责判别修复图像与原图像的匹配程度和全局一致性。训练中,网络模型一方面修复掩码或缺失的图像,一方面通过全局判别器进行真伪人脸图

点评

GAN 用于图像修复,生成与活检的结合方式

★★★


相关推荐
shelly聊AI1 分钟前
AI赋能财务管理,AI技术助力企业自动化处理财务数据
人工智能·财务管理
波点兔2 分钟前
【部署glm4】属性找不到、参数错误问题解决(思路:修改模型包版本)
人工智能·python·机器学习·本地部署大模型·chatglm4
佚明zj1 小时前
全卷积和全连接
人工智能·深度学习
qzhqbb3 小时前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨4 小时前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_883041084 小时前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌5 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭5 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^5 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246666 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp