【FAS】《Application of machine learning to face Anti-spoofing detection》

文章目录

原文

李莉.反欺骗人脸活体图像的机器学习方法研究[D].广东工业学,2020.DOI:10.27029/d.cnki.ggdgu.2020.001204.

相关工作

一、基于手工特征的人脸活体检测方法

(1)基于图像纹理特征


(2)基于多光谱特征


(3)基于运动信息

由于伪造欺骗人脸模仿真实人脸运动时,人脸会连带身后的背景区域一同运动,背景区域也会被识别。当一个点在运动时,对应图像上相同或位置的光源也在移动,这种基于图像亮度运动特征的提取方法便是光流法。真实人脸和伪造的欺骗二维人脸图像在运动模式上是不同的。真实人脸做出动作时,脸部不同运动产生不同的光流。而伪造的欺骗二维人脸图像则几乎无变化


二、基于深度学习的人脸活体检测方法

三、基于融合特征的人脸活体检测方法

空间金字塔编码微纹理(SPMT)特征描述符

方法

静态 Gabor 小波和动态 LBP 的融合特征

传统:提取 Gabor 小波特征和动态 LBP 特征 + SVM

数据集

结果

基于 GAN 的数据增强人脸活体检测方法

时常会造成训练时模式崩溃(collapse mode),产生的结果不具备多样性,比较单一

GAN------DCGAN 生成难样本加入训练集 + SVM


半监督学习用于图像修复的人脸活体检测

半监督(利用图像修复的方法)

引入基于 GAN 的图像修复模型

网络结构分为生成模型 用于修复图像;局部判别器 负责判别修复图像的清晰度和局部一致性,全局判别器负责判别修复图像与原图像的匹配程度和全局一致性。训练中,网络模型一方面修复掩码或缺失的图像,一方面通过全局判别器进行真伪人脸图

点评

GAN 用于图像修复,生成与活检的结合方式

★★★


相关推荐
自不量力的A同学1 小时前
微软发布「AI Shell」
人工智能·microsoft
一点一木1 小时前
AI与数据集:从零基础到全面应用的深度解析(超详细教程)
人工智能·python·tensorflow
花生糖@1 小时前
OpenCV图像基础处理:通道分离与灰度转换
人工智能·python·opencv·计算机视觉
2zcode1 小时前
基于YOLOv8深度学习的智慧农业棉花采摘状态检测与语音提醒系统(PyQt5界面+数据集+训练代码)
人工智能·深度学习·yolo
秀儿还能再秀2 小时前
神经网络(系统性学习四):深度学习——卷积神经网络(CNN)
人工智能·深度学习·机器学习·cnn·学习笔记
小彭努力中2 小时前
141. Sprite标签(Canvas作为贴图)
前端·深度学习·3d·webgl·three.js
开MINI的工科男3 小时前
【笔记】自动驾驶预测与决策规划_Part7_数据驱动的预测方法
人工智能·自动驾驶·端到端·预测与决策·多模态预测
蒋会全4 小时前
第2.3 AI文本—prompt入门
人工智能·prompt·aigc
Evaporator Core4 小时前
门控循环单元(GRU)与时间序列预测应用
人工智能·深度学习·gru
是Yu欸4 小时前
【Github】如何使用Git将本地项目上传到Github
人工智能·git·深度学习·github·论文笔记·cvpr