论文:R语言数据分析之机器学习论文

欢迎大家关注全网生信学习者系列:

  • WX公zhong号:生信学习者
  • Xiao hong书:生信学习者
  • 知hu:生信学习者
  • CDSN:生信学习者2

一、研究背景

全球范围内,乳腺癌是导致癌症发病率和死亡率的主要疾病之一。根据2018年全球癌症统计报告的估计,乳腺癌是女性中第二常见的恶性肿瘤,占所有女性癌症的11.6%以上。它被列为全球癌症死亡原因的第五位,导致全球癌症死亡率的6.6%。乳腺癌导致了大量的公共卫生负担,造成了1480万残疾调整生命年(DALYs)的损失。在发达国家,乳腺癌的发病率显著高于其他国家;全球范围内,高或非常高的人类发展指数(HDI)国家的乳腺癌年龄标准化发病率为每10万名女性54.5例,而低至中等HDI国家的发病率为31.3例。在女性人口中,乳腺癌的死亡率仍然最高,是报告最多的女性癌症死亡原因。

2018年共报告了2088849 例新发乳腺癌病例和626679 例相关死亡。全球乳腺癌的年龄标准化发病率为每10万人口46.3例,并且在全球范围内显示出几乎四倍的变异(见图1)。最高发病率出现在澳大利亚和新西兰、西欧、北欧和北美,而最低发病率则出现在南亚、中东、东非和西非、东南亚和中美洲。乳腺癌的发病率在西方国家,包括澳大利亚、欧洲和美洲,往往更为普遍。与低人类发展指数(HDI)国家或中等HDI国家相比,乳腺癌在非常高HDI或高HDI国家的发病率更高。

乳腺癌是全球女性死亡的主要原因之一。它可以分为三类:正常、良性和恶性肿瘤。此外,乳腺癌分为五个阶段(0-IV)。然而,这些阶段是根据肿瘤的大小、是否为侵袭性或非侵袭性癌症、是否影响淋巴结以及是否扩散到其他部位来区分的,尽管随着癌症进展到第四阶段,生存机会会减少[@dey2018review]。因此,乳腺癌的早期发现和分析可以提高生存概率并降低死亡率。乳腺X线摄影(Mammography)、乳腺超声(Breast Ultrasound)、磁共振成像(Magnetic Resonance Imaging, MRI)、正电子发射断层扫描(Positron Emission Tomography, PET)以及计算机断层扫描(Computed Tomography, CT)是一些用于乳腺癌诊断的成像技术。本文使用的数据构建乳腺癌诊断分类模型。该数据集的特征是从乳腺肿块的细针抽吸(Fine Needle Aspirate, FNA)的数字化图像中计算得出。它们描述了图像中存在的细胞核的特征。因此,开发精确的算法以识别和区分乳腺癌显得尤为必要,这将显著提升诊断的准确性。本文将基于随机森林算法构建预测乳腺癌患者的模型。

二、研究意义

在临床上,数据驱动的技术正在逐渐展现出其独特的价值,特别是在癌症诊断与预测方面。基于数字化图像的数据开发,我们构建了一个针对乳腺癌患者的二分类器模型。该预测模型将为乳腺癌的临床诊断提供有力支持,有助于医生更准确地识别乳腺癌患者,为患者带来更好的诊断效果和生活质量。

三、内容

本次论文包含以下内容:

  • 第二章 数据准备

  • 第三章 特征提取

  • 第四章 模型构建

  • 第五章 解释模型

  • 第六章 总结

四、教程

本教程提供了四种不同的格式,HTML、PDF、word和epub,方便广大读者阅读。

五、获取教程

获取该教程和输入数据见下面链接:

百度网盘链接: https://pan.baidu.com/s/1nIqIn13KGLjuwVeCtW8r4A

提取码(提示:付费获取 ): 请前往R语言数据分析之机器学习论文

相关推荐
_玖-幽10 分钟前
大数据分析02 基础语法差异
python·数据分析·go
明明真系叻1 小时前
2025.4.20机器学习笔记:文献阅读
人工智能·笔记·机器学习
zhanghongyi_cpp2 小时前
R语言操作练习2
r语言
qq_436962183 小时前
AI数据分析的优势分析
人工智能·数据挖掘·数据分析
质变科技AI就绪数据云3 小时前
质变科技发布自主数据分析MCP Server
ai·数据挖掘·数据分析·mcp·人工智能代理
神经星星4 小时前
【TVM教程】microTVM TFLite 指南
人工智能·机器学习·编程语言
SunsPlanter5 小时前
机器学习期末
人工智能·机器学习
吹风看太阳5 小时前
机器学习02——RNN
人工智能·rnn·机器学习
jerry2011087 小时前
R语言之环境清理
开发语言·r语言
Ac157ol7 小时前
《基于神经网络实现手写数字分类》
人工智能·深度学习·神经网络·机器学习·cnn