CNN学习(7):用C++实现简单不同参数的卷积模型

目录

一、参数说明和计算公式

1、符号约定

2、输出大小计算公式

二、不同类型的卷积

1、输入3*3*1,卷积核3*3*1,输出1*1*1

(1)实现代码

(2)代码说明

2、输入4*4*1,卷积核3*3*1,步长1*1,输出2*2*1

(1)实现代码

(2)代码说明

3、输入4*4*1,卷积核2*2*1,步长2*2,输出2*2*1

(1)实现代码

4、输入4*4*1,卷积核3*3*1,步长1*1,padding为1*1,输出2*2*1

​编辑

(1)实现代码

(2)代码说明

5、输入4*4*2,卷积核3*3*2,步长1*1,padding为1*1,输出2*2*1

(1)实现代码

6、输入4*4*1,卷积核3*3*1,卷积核个数2,步长1*1,padding为1*1,输出2*2*1

(1)实现代码

(2)代码说明

7、输入4*4*2,卷积核3*3*2,步长1*1,padding为1*1,膨胀系数2,输出2*2*2

三、可执行的卷积操作代码


参考资料:

(图解)一步一步使用CPP实现深度学习中的卷积 - GiantPandaCV

其实在上述链接里已经写的非常详细了,为了便于后续理解和学习,所以写个理解的备忘录。

一、参数说明和计算公式

1、符号约定

cpp 复制代码
F[] 为输入;
width 为输入的宽;
height 为输入的高;
channel 为输入的通道;

K[] 为 kernel;
kSizeX 为 kernel 的宽;
kSizeY 为 kernel 的高;
filters 为 kernel 的个数;
padX 为水平方向的填充;
padY 为垂直方向的填充;
strideX 为水平方向的步长;
strideY 为垂直方向的步长;


O[] 为输出;
outW 为输出的宽;
outH 为输出的高;
outChannel 为输出的通道;

2、输出大小计算公式

cpp 复制代码
int outH = (height+2*padY-(dilationY*(kSizeY-1)+1)) / strideY + 1;
int outW = (width+2*padX-(dilationX*(kSizeX-1)+1)) / strideX + 1;

公式说明:

  • height + 2 * padY: 首先,将输入图像的高度加上两倍的填充量,这是因为填充是对称地加在图像的顶部和底部。

  • dilationY * (kSizeY - 1): 这是计算卷积核中除了中心元素外,其他元素之间的总间隔。kSizeY - 1表示卷积核的高度减去中心元素,乘以膨胀系数dilationY,得到这些元素之间的间隔数。

  • dilationY * (kSizeY - 1) + 1: 将上述间隔数加上1,是因为我们还要包括卷积核的中心元素。

  • (height + 2 * padY - (dilationY * (kSizeY - 1) + 1)): 这个表达式计算了在考虑填充和膨胀后,输入图像实际上被卷积核覆盖的区域的高度。

  • / strideY: 将上述计算得到的高度除以步长,得到在垂直方向上卷积核可以覆盖的步数。

  • + 1: 最后,由于输出的高度至少要有一个元素,即使计算结果为0,我们也需要加1,以确保输出尺寸至少为1。

二、不同类型的卷积

1、输入3*3*1,卷积核3*3*1,输出1*1*1

(1)实现代码

封装成demo0(),main()函数可直接调用

cpp 复制代码
void demo0()
{
    float F[] = {1,2,3,4,5,6,7,8,9};
    float K[] = {1,2,3,4,5,6,7,8,9};
    float O = 0;

    int width  = 3;
    int height = 3;
    int kSizeX = 3;
    int kSizeY = 3;

    for(int m=0;m<kSizeY;m++)
    {
        for(int n=0;n<kSizeX;n++)
        {
            O+=K[m*kSizeX+n]*F[m*width+n];
        }
    }

    std::cout<<O<<" ";
}

(2)代码说明

  1. 前面都是定义输入矩阵和卷积核,同时定义一个浮点数变量O并初始化为0,用于累加结果。
  2. 两个嵌套循环遍历卷积核的每个元素:
    1. for(int m=0; m<kSizeY; m++):外层循环遍历卷积核的高度。
    2. for(int n=0; n<kSizeX; n++):内层循环遍历卷积核的宽度。
    3. 嵌套循环内部,O += K[m*kSizeX + n] * F[m*width + n];用来执行卷积操作。这行代码将卷积核的当前元素 K[m*kSizeX + n] 与输入矩阵的对应元素 F[m*width + n] 相乘,并将结果累加到 O 中【其中位置是相同的,m只是用来决定以kSize为单位的轮次】。

2、输入4*4*1,卷积核3*3*1,步长1*1,输出2*2*1

(1)实现代码

cpp 复制代码
void demo1()
{
    float F[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
    float K[] = {1,2,3,4,5,6,7,8,9};
    float O[] = {0,0,0,0};

    int padX = 0;
    int padY = 0;

    int dilationX = 1;
    int dilationY = 1;

    int strideX  = 1;
    int strideY  = 1;

    int width = 4;
    int height = 4;

    int kSizeX = 3;
    int kSizeY = 3;

    int outH = (height+2*padY-(dilationY*(kSizeY-1)+1)) / strideY + 1;
    int outW = (width+2*padX-(dilationX*(kSizeX-1)+1)) / strideX + 1;

    for(int i=0;i<outH;i++)
    {
        for(int j=0;j<outW;j++)
        {
            for(int m=0;m<kSizeY;m++)
            {
                for(int n=0;n<kSizeX;n++)
                {
                    O[i*outW+j]+=K[m*kSizeX+n]*F[(m+i)*width+(n+j)];
                }
            }
        }
    }

    for (int i = 0; i < outH; ++i)
    {
        for (int j = 0; j < outW; ++j)
        {
            std::cout<<O[i*outW+j]<<" ";
        }
        std::cout<<std::endl;
    }
}

(2)代码说明

  1. 前面都是定义输入矩阵和卷积核,同时定义一个浮点数变量O并初始化【和前面后面一样,都是先计算出来输出结果的大小,然后再执行】,用于累加结果。
  2. 四个嵌套循环开始进行卷积计算:
    1. 外层两个循环遍历输出特征图的每个位置。
    2. 内层两个循环遍历卷积核的每个元素。
  3. 在内层循环中,计算卷积核覆盖的输入特征图区域的加权和,并将结果累加到输出特征图的相应位置。

3、输入4*4*1,卷积核2*2*1,步长2*2,输出2*2*1

(1)实现代码

cpp 复制代码
void demo2()
{
    // (height + 2 * paddingY - (dilationY * (kSizeY - 1) + 1)) / strideY + 1;
    // (width + 2 * paddingX - (dilationX * (kSizeX - 1) + 1)) / strideX + 1;

    float F[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
    float K[] = {1,2,3,4};
    //float K[] = {1,2,3,4,5,6,7,8,9};
    float O[] = {0,0,0,0};

    int padX = 0;
    int padY = 0;

    int dilationX = 1;
    int dilationY = 1;

    int strideX  = 2;
    int strideY  = 2;

    int width = 4;
    int height = 4;

    int kSizeX = 2;
    int kSizeY = 2;

    int outH = (height+2*padY-(dilationY*(kSizeY-1)+1)) / strideY + 1;
    int outW = (width+2*padX-(dilationX*(kSizeX-1)+1)) / strideX + 1;

    for(int i=0;i<outH;i++)
    {
        for(int j=0;j<outW;j++)
        {
            for(int m=0;m<kSizeY;m++)
            {
                for(int n=0;n<kSizeX;n++)
                {
                    O[i*outW+j]+=K[m*kSizeX+n]*F[(m+i*strideY)*width+(n+j*strideX)];
                }
            }
        }
    }

    for (int i = 0; i < outH; ++i)
    {
        for (int j = 0; j < outW; ++j)
        {
            std::cout<<O[i*outW+j]<<" ";
        }
        std::cout<<std::endl;
    }
}

这个和上一段代码解释相同,只不过步长和卷积核大小有改变。

4、输入4*4*1,卷积核3*3*1,步长1*1,padding为1*1,输出2*2*1

(1)实现代码

cpp 复制代码
void demo3()
{
    float F[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
    float K[] = {1,2,3,4,5,6,7,8,9};
    float O[] = {0,0,0,0};

    int padX = 1;
    int padY = 1;

    int dilationX = 1;
    int dilationY = 1;

    int strideX  = 2;
    int strideY  = 2;

    int width = 4;
    int height = 4;

    int kSizeX = 3;
    int kSizeY = 3;

    int outH = (height+2*padY-(dilationY*(kSizeY-1)+1)) / strideY + 1;
    int outW = (width+2*padX-(dilationX*(kSizeX-1)+1)) / strideX + 1;

    for(int i=0;i<outH;i++)
    {
        for(int j=0;j<outW;j++)
        {
            for(int m=0;m<kSizeY;m++)
            {
                for(int n=0;n<kSizeX;n++)
                {
                    float fVal = 0;  
                    //考虑边界强情况
                    if((n+j*strideX-padX)>-1&&(m+i*strideY-padY>-1)&&(n+j*strideX-padX)<=width&&(m+i*strideY-padY>-1)<=height) 
                    {
                        fVal = F[(m+i*strideY-padX)*width+(n+j*strideX-padY)];
                    }
                    O[i*outW+j]+=K[m*kSizeX+n]*fVal;
                }
            }
        }
    }

    for (int i = 0; i < outH; ++i)
    {
        for (int j = 0; j < outW; ++j)
        {
            std::cout<<O[i*outW+j]<<" ";
        }
        std::cout<<std::endl;
    }
}

(2)代码说明

按照正常计算输出规模公式计算的话,应该输出是4*4*1。但是考虑到边界墙问题。

if 语句块用来检查当前卷积核的 mn 索引是否在输入特征图的边界内。这里考虑了填充(padding)的情况:

  • (n+j*strideX - padX) 计算了卷积核的左边界在输入特征图上的索引。
  • (m+i*strideY - padY) 计算了卷积核的上边界在输入特征图上的索引。
  • 条件 > -1 确保索引不会是负数。
  • 条件 <= width<= height 确保索引不会超出输入特征图的边界。

5、输入4*4*2,卷积核3*3*2,步长1*1,padding为1*1,输出2*2*1

其中依旧考虑了边界墙问题。

(1)实现代码

cpp 复制代码
void demo4()
{
    float F[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
    float K[] = {1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9};
    float O[] = {0,0,0,0};

    int padX = 1;
    int padY = 1;

    int dilationX = 1;
    int dilationY = 1;

    int strideX  = 2;
    int strideY  = 2;

    int width = 4;
    int height = 4;

    int kSizeX = 3;
    int kSizeY = 3;

    int channel = 2;

    int outH = (height+2*padY-(dilationY*(kSizeY-1)+1)) / strideY + 1;
    int outW = (width+2*padX-(dilationX*(kSizeX-1)+1)) / strideX + 1;

    for (int c = 0; c < channel; ++c)
    {
        for(int i=0;i<outH;i++)
        {
            for(int j=0;j<outW;j++)
            {
                for(int m=0;m<kSizeY;m++)
                {
                    for(int n=0;n<kSizeX;n++)
                    {
                        float fVal = 0;
                        if((n+j*strideX-padX)>-1&&(m+i*strideY-padY>-1)&&(n+j*strideX-padX)<=width&&(m+i*strideY-padY>-1)<=height)
                        {
                            fVal = F[c*width*height + (m+i*strideY-padX)*width+(n+j*strideX-padY)];
                        }
                        O[i*outW+j]+=K[c*kSizeX*kSizeY+m*kSizeX+n]*fVal;
                    }
                }
            }
        }
    }

    for (int i = 0; i < outH; ++i)
    {
        for (int j = 0; j < outW; ++j)
        {
            std::cout<<O[i*outW+j]<<" ";
        }
        std::cout<<std::endl;
    }
}

6、输入4*4*1,卷积核3*3*1,卷积核个数2,步长1*1,padding为1*1,输出2*2*1

(1)实现代码

cpp 复制代码
void demo5()
{
    float F[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
    float K[] = {1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,
                 1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9
                };
    float O[] = {0,0,0,0,0,0,0,0};

    int padX = 1;
    int padY = 1;

    int dilationX = 1;
    int dilationY = 1;

    int strideX  = 2;
    int strideY  = 2;

    int width = 4;
    int height = 4;

    int kSizeX = 3;
    int kSizeY = 3;

    int channel = 2;

    int filters = 2;

    int outH = (height+2*padY-(dilationY*(kSizeY-1)+1)) / strideY + 1;
    int outW = (width+2*padX-(dilationX*(kSizeX-1)+1)) / strideX + 1;

    int outC = filters;

    for (int oc = 0; oc < outC; ++oc)
    {
        for (int c = 0; c < channel; ++c)
        {
            for(int i=0;i<outH;i++)
            {
                for(int j=0;j<outW;j++)
                {
                    for(int m=0;m<kSizeY;m++)
                    {
                        for(int n=0;n<kSizeX;n++)
                        {
                            float fVal = 0;
                            if((n+j*strideX-padX)>-1&&(m+i*strideY-padY>-1)&&(n+j*strideX-padX)<=width&&(m+i*strideY-padY>-1)<=height)
                            {
                                fVal = F[c*width*height + (m+i*strideY-padX)*width+(n+j*strideX-padY)];
                            }
                            O[oc*outH*outW+i*outW+j]+=K[oc*outC*kSizeX*kSizeY+c*kSizeX*kSizeY+m*kSizeX+n]*fVal;
                        }
                    }
                }
            }
        }
    }

    for (int oc = 0; oc < outC; ++oc)
    {
        for (int i = 0; i < outH; ++i)
        {
            for (int j = 0; j < outW; ++j)
            {
                std::cout<<O[oc*outH*outW+i*outW+j]<<" ";
            }
            std::cout<<std::endl;
        }
        std::cout<<std::endl<<std::endl;
    }
}

(2)代码说明

  1. 六个嵌套循环实现了卷积操作:

    • 最外层循环遍历输出特征图的每个通道。
    • 第二个循环遍历输入特征图的每个通道。
    • 第三个和第四个循环遍历输出特征图的每个元素。
    • 最内层两个循环遍历每个卷积核的元素。
  2. 在最内层循环中,首先检查当前卷积核的索引是否在输入特征图的边界内,如果是,则从输入特征图中取出相应的元素 fVal

  3. 然后,将 fVal 与对应卷积核的元素相乘,并将结果累加到输出特征图的对应位置。

7、输入4*4*2,卷积核3*3*2,步长1*1,padding为1*1,膨胀系数2,输出2*2*2

cpp 复制代码
void demo6()
{
    float F[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
    float K[] = {1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,
                 1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9
                };
    float O[] = {0,0,0,0,0,0,0,0};

    int padX = 1;
    int padY = 1;

    int dilationX = 2;
    int dilationY = 2;

    int strideX  = 1;
    int strideY  = 1;

    int width = 4;
    int height = 4;

    int kSizeX = 3;
    int kSizeY = 3;

    int channel = 2;

    int filters = 2;

    int outH = (height+2*padY-(dilationY*(kSizeY-1)+1)) / strideY + 1;
    int outW = (width+2*padX-(dilationX*(kSizeX-1)+1)) / strideX + 1;

    int outC = filters;

    for (int oc = 0; oc < outC; ++oc)
    {
        for (int c = 0; c < channel; ++c)
        {
            for(int i=0;i<outH;i++)
            {
                for(int j=0;j<outW;j++)
                {
                    for(int m=0;m<kSizeY;m++)
                    {
                        for(int n=0;n<kSizeX;n++)
                        {
                            float fVal = 0;
                            if( ((n+j*strideX)*dilationX-padX)>-1 && ((m+i*strideY)*dilationY-padY)>-1&&
                               ((n+j*strideX)*dilationX-padX)<=width && ((m+i*strideY)*dilationY-padY>-1)<=height)
                            {
                                fVal = F[c*width*height + ((m+i*strideY)*dilationX-padX)*width+((n+j*strideX)*dilationY-padY)];
                            }
                            O[oc*outH*outW+i*outW+j]+=K[oc*outC*kSizeX*kSizeY+c*kSizeX*kSizeY+m*kSizeX+n]*fVal;
                        }
                    }
                }
            }
        }
    }

    for (int oc = 0; oc < outC; ++oc)
    {
        for (int i = 0; i < outH; ++i)
        {
            for (int j = 0; j < outW; ++j)
            {
                std::cout<<O[oc*outH*outW+i*outW+j]<<" ";
            }
            std::cout<<std::endl;
        }
        std::cout<<std::endl;
    }
}

三、可执行的卷积操作代码

cpp 复制代码
#include <iostream>

void demo0()    //输入3*3*1,卷积核3*3*1,输出为1*1*1
{
    float F[] = {1,2,3,4,5,6,7,8,9};
    float K[] = {1,2,3,4,5,6,7,8,9};
    float O = 0;

    int width  = 3;
    int height = 3;
    int kSizeX = 3;
    int kSizeY = 3;

    for(int m=0;m<kSizeY;m++)
    {
        for(int n=0;n<kSizeX;n++)
        {
            O+=K[m*kSizeX+n]*F[m*width+n];
        }
    }
    std::cout<<O<<" ";
}

void demo1()    //输入4*4*1,卷积核3*3*1,步长为1*1,no padding,输出为1*1*1
{
    //计算公式
    // (height + 2 * paddingY - (dilationY * (kSizeY - 1) + 1)) / strideY + 1;
    // (width + 2 * paddingX - (dilationX * (kSizeX - 1) + 1)) / strideX + 1;

    float F[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
    float K[] = {1,2,3,4,5,6,7,8,9};
    float O[] = {0,0,0,0};

    int padX = 0;
    int padY = 0;

    int dilationX = 1;
    int dilationY = 1;

    int strideX  = 1;
    int strideY  = 1;

    int width = 4;
    int height = 4;

    int kSizeX = 3;
    int kSizeY = 3;

    int outH = (height+2*padY-(dilationY*(kSizeY-1)+1)) / strideY + 1;
    int outW = (width+2*padX-(dilationX*(kSizeX-1)+1)) / strideX + 1;

    for(int i=0;i<outH;i++)
    {
        for(int j=0;j<outW;j++)
        {
            for(int m=0;m<kSizeY;m++)
            {
                for(int n=0;n<kSizeX;n++)
                {
                    O[i*outW+j]+=K[m*kSizeX+n]*F[(m+i)*width+(n+j)];
                    /* int inputIndex = (i * strideY + m) * width + (j * strideX + n);
                    O[i * outW + j] += K[m * kSizeX + n] * F[inputIndex]; */
                }
            }
        }
    }

    for (int i = 0; i < outH; ++i)
    {
        for (int j = 0; j < outW; ++j)
        {
            std::cout<<O[i*outW+j]<<" ";
        }
        std::cout<<std::endl;
    }
}

void demo2()
{

    float F[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
    float K[] = {1,2,3,4};
    //float K[] = {1,2,3,4,5,6,7,8,9};
    float O[] = {0,0,0,0};

    int padX = 0;
    int padY = 0;

    int dilationX = 1;
    int dilationY = 1;

    int strideX  = 2;
    int strideY  = 2;

    int width = 4;
    int height = 4;

    int kSizeX = 2;
    int kSizeY = 2;

    int outH = (height+2*padY-(dilationY*(kSizeY-1)+1)) / strideY + 1;
    int outW = (width+2*padX-(dilationX*(kSizeX-1)+1)) / strideX + 1;

    for(int i=0;i<outH;i++)
    {
        for(int j=0;j<outW;j++)
        {
            for(int m=0;m<kSizeY;m++)
            {
                for(int n=0;n<kSizeX;n++)
                {
                    O[i*outW+j]+=K[m*kSizeX+n]*F[(m+i*strideY)*width+(n+j*strideX)];
                }
            }
        }
    }

    for (int i = 0; i < outH; ++i)
    {
        for (int j = 0; j < outW; ++j)
        {
            std::cout<<O[i*outW+j]<<" ";
        }
        std::cout<<std::endl;
    }
}

void demo3()
{

    float F[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
    //float K[] = {1,2,3,4};
    float K[] = {1,2,3,4,5,6,7,8,9};
    float O[] = {0,0,0,0};

    int padX = 1;
    int padY = 1;

    int dilationX = 1;
    int dilationY = 1;

    int strideX  = 2;
    int strideY  = 2;

    int width = 4;
    int height = 4;

    int kSizeX = 3;
    int kSizeY = 3;

    int outH = (height+2*padY-(dilationY*(kSizeY-1)+1)) / strideY + 1;
    int outW = (width+2*padX-(dilationX*(kSizeX-1)+1)) / strideX + 1;

    for(int i=0;i<outH;i++)
    {
        for(int j=0;j<outW;j++)
        {
            for(int m=0;m<kSizeY;m++)
            {
                for(int n=0;n<kSizeX;n++)
                {
                    float fVal = 0;
                    //考虑边界强情况
                    if((n+j*strideX-padX)>-1&&(m+i*strideY-padY>-1)&&(n+j*strideX-padX)<=width&&(m+i*strideY-padY>-1)<=height)
                    {
                        fVal = F[(m+i*strideY-padX)*width+(n+j*strideX-padY)];
                    }
                    O[i*outW+j]+=K[m*kSizeX+n]*fVal;
                }
            }
        }
    }

    for (int i = 0; i < outH; ++i)
    {
        for (int j = 0; j < outW; ++j)
        {
            std::cout<<O[i*outW+j]<<" ";
        }
        std::cout<<std::endl;
    }
}

void demo4()
{
    float F[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
    //float K[] = {1,2,3,4};
    float K[] = {1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9};
    float O[] = {0,0,0,0};

    int padX = 1;
    int padY = 1;

    int dilationX = 1;
    int dilationY = 1;

    int strideX  = 2;
    int strideY  = 2;

    int width = 4;
    int height = 4;

    int kSizeX = 3;
    int kSizeY = 3;

    int channel = 2;

    int outH = (height+2*padY-(dilationY*(kSizeY-1)+1)) / strideY + 1;
    int outW = (width+2*padX-(dilationX*(kSizeX-1)+1)) / strideX + 1;

    for (int c = 0; c < channel; ++c)
    {
        for(int i=0;i<outH;i++)
        {
            for(int j=0;j<outW;j++)
            {
                for(int m=0;m<kSizeY;m++)
                {
                    for(int n=0;n<kSizeX;n++)
                    {
                        float fVal = 0;
                        if((n+j*strideX-padX)>-1&&(m+i*strideY-padY>-1)&&(n+j*strideX-padX)<=width&&(m+i*strideY-padY>-1)<=height)
                        {
                            fVal = F[c*width*height + (m+i*strideY-padX)*width+(n+j*strideX-padY)];
                        }
                        O[i*outW+j]+=K[c*kSizeX*kSizeY+m*kSizeX+n]*fVal;
                    }
                }
            }
        }
    }

    for (int i = 0; i < outH; ++i)
    {
        for (int j = 0; j < outW; ++j)
        {
            std::cout<<O[i*outW+j]<<" ";
        }
        std::cout<<std::endl;
    }
}

void demo5()
{

    float F[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
    //float K[] = {1,2,3,4};
    float K[] = {1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,
                 1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9
                };
    float O[] = {0,0,0,0,0,0,0,0};

    int padX = 1;
    int padY = 1;

    int dilationX = 1;
    int dilationY = 1;

    int strideX  = 2;
    int strideY  = 2;

    int width = 4;
    int height = 4;

    int kSizeX = 3;
    int kSizeY = 3;

    int channel = 2;

    int filters = 2;

    int outH = (height+2*padY-(dilationY*(kSizeY-1)+1)) / strideY + 1;
    int outW = (width+2*padX-(dilationX*(kSizeX-1)+1)) / strideX + 1;

    int outC = filters;

    for (int oc = 0; oc < outC; ++oc)
    {
        for (int c = 0; c < channel; ++c)
        {
            for(int i=0;i<outH;i++)
            {
                for(int j=0;j<outW;j++)
                {
                    for(int m=0;m<kSizeY;m++)
                    {
                        for(int n=0;n<kSizeX;n++)
                        {
                            float fVal = 0;
                            if((n+j*strideX-padX)>-1&&(m+i*strideY-padY>-1)&&(n+j*strideX-padX)<=width&&(m+i*strideY-padY>-1)<=height)
                            {
                                fVal = F[c*width*height + (m+i*strideY-padX)*width+(n+j*strideX-padY)];
                            }
                            O[oc*outH*outW+i*outW+j]+=K[oc*channel*kSizeX*kSizeY+c*kSizeX*kSizeY+m*kSizeX+n]*fVal;
                        }
                    }
                }
            }
        }
    }

    for (int oc = 0; oc < outC; ++oc)
    {
        for (int i = 0; i < outH; ++i)
        {
            for (int j = 0; j < outW; ++j)
            {
                std::cout<<O[oc*outH*outW+i*outW+j]<<" ";
            }
            std::cout<<std::endl;
        }
        std::cout<<std::endl<<std::endl;
    }
}

void demo6()
{
    // (height + 2 * paddingY - (dilationY * (kSizeY - 1) + 1)) / strideY + 1;
    // (width + 2 * paddingX - (dilationX * (kSizeX - 1) + 1)) / strideX + 1;

    float F[] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
    //float K[] = {1,2,3,4};
    float K[] = {1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,
                 1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9
                };
    float O[] = {0,0,0,0,0,0,0,0};

    int padX = 1;
    int padY = 1;

    int dilationX = 2;
    int dilationY = 2;

    int strideX  = 1;
    int strideY  = 1;

    int width = 4;
    int height = 4;

    int kSizeX = 3;
    int kSizeY = 3;

    int channel = 2;

    int filters = 2;

    int outH = (height+2*padY-(dilationY*(kSizeY-1)+1)) / strideY + 1;
    int outW = (width+2*padX-(dilationX*(kSizeX-1)+1)) / strideX + 1;

    int outC = filters;

    for (int oc = 0; oc < outC; ++oc)
    {
        for (int c = 0; c < channel; ++c)
        {
            for(int i=0;i<outH;i++)
            {
                for(int j=0;j<outW;j++)
                {
                    for(int m=0;m<kSizeY;m++)
                    {
                        for(int n=0;n<kSizeX;n++)
                        {
                            float fVal = 0;
                            if( ((n+j*strideX)*dilationX-padX)>-1 && ((m+i*strideY)*dilationY-padY)>-1&&
                                    ((n+j*strideX)*dilationX-padX)<=width && ((m+i*strideY)*dilationY-padY>-1)<=height)
                            {
                                fVal = F[c*width*height + ((m+i*strideY)*dilationX-padX)*width+((n+j*strideX)*dilationY-padY)];
                            }
                            O[oc*outH*outW+i*outW+j]+=K[oc*channel*kSizeX*kSizeY+c*kSizeX*kSizeY+m*kSizeX+n]*fVal;
                        }
                    }
                }
            }
        }
    }

    for (int oc = 0; oc < outC; ++oc)
    {
        for (int i = 0; i < outH; ++i)
        {
            for (int j = 0; j < outW; ++j)
            {
                std::cout<<O[oc*outH*outW+i*outW+j]<<" ";
            }
            std::cout<<std::endl;
        }
        std::cout<<std::endl;
    }
}


int main(int argc, char *argv[])
{
    //demo0();
    demo1();
    //demo2();
    //demo3();
    //demo4();
    //demo5();
    //demo6();
}

(1)将上述文件为my_code.cc源文件。

如果要使用不同类型的demo,可以直接在main函数中调用。

(2)然后在终端运行:

bash 复制代码
g++ -o my_code my_code.cc

此时已编译出可执行的二进制my_code。

(3)执行my_code文件

bash 复制代码
./my_code

最后说明:其实我个人觉得这种方式使用起来除了简单易懂,但在实际操作中并不可取。主要是所有的变量值都需要在demo()函数中手工赋值,耦合性和实用性较差。但是目前也没有更好的实测,等过阵子我的程序写完后,再和大家分享。

相关推荐
Francek Chen43 分钟前
【大数据分析&深度学习】在Hadoop上实现分布式深度学习
人工智能·hadoop·分布式·深度学习·数据分析
明朝百晓生1 小时前
【PyTorch][chapter 228][李宏毅深度学习][Diffusion Model-1]
人工智能
骑猪玩狗1 小时前
第N8周:使用Word2vec实现文本分类
人工智能·分类·word2vec
狗窝超厉害1 小时前
研0找实习【学nlp】15---我的后续,总结(暂时性完结)
人工智能·pytorch·python·自然语言处理·bert
企业通用软件开发1 小时前
大语言模型提示词工程学习--写小说系列(文心一言&豆包&通义千问):1~创作前的准备工作
人工智能·学习·语言模型
龙的爹23331 小时前
论文翻译 | BERTese: Learning to Speak to BERT
人工智能·深度学习·自然语言处理·prompt·bert
神奇的布欧1 小时前
BERT的工作原理
人工智能·深度学习·bert
孤单网愈云1 小时前
11.22Pytorch_自动微分
人工智能·pytorch·python
weixin_466202782 小时前
第32周:猴痘病识别(Tensorflow实战第四周)
人工智能·python·tensorflow
Mr.Winter`2 小时前
优化求解 | 非线性最小二乘优化器Ceres安装教程与应用案例
人工智能·机器人·自动驾驶·ros·数值优化