第五章重采样方法

目录

第二题

第三题

第四题

第二题

我们现在将推导一个给定观测值是引导样本一部分的概率。假设我们从n个观测值中获得一个 引导样本。

(a) 第一个引导观测值不是 原始样本中第j个观测值的概率是多少?请证明你的答案。

(b) 第二个引导观测值不是 原始样本中第j个观测值的概率是多少?

(c) 论证原始样本中第j个观测值不在 引导样本中的概率是(1 − 1/n)^n。

(d) 当n = 5时,第j个观测值在引导样本中的概率是多少?

(e) 当n = 100时,第j个观测值在引导样本中的概率是多少?

(f) 当n = 10,000时,第j个观测值在引导样本中的概率是多少?

回答:

(a) 第一个引导观测值不是原始样本中第j个观测值的概率: 每个观测值被选中的概率是1/n。因此,第j个观测值不被选中的概率是1 - 1/n。

(b) 第二个引导观测值不是原始样本中第j个观测值的概率: 由于每次选择都是独立的,第二次选择和第一次选择相同,因此概率也是1 - 1/n。

第三题

k折交叉验证的实现步骤:

  1. 划分数据集:将整个数据集随机分成k个等大小的子集(folds)。
  2. 训练与验证 :对于每个子集:
    • 使用其中的k-1个子集作为训练集。
    • 使用剩下的1个子集作为验证集。
    • 训练模型并在验证集上进行评估,记录模型的评估结果(例如误差)。
  3. 重复:重复上述过程k次,每次选择不同的子集作为验证集。
  4. 计算平均性能:将所有k次验证结果的评估指标取平均值,作为模型的最终性能指标。

通过这种方式,可以有效利用数据进行模型评估和调优,减少过拟合的风险。

(b) k折交叉验证相对于其他方法的优点和缺点:

i. 相对于验证集方法

  • 优点
    • 更稳定和可靠的性能估计:验证集方法仅使用一次划分,评估结果可能对数据划分方式非常敏感。而k折交叉验证通过多次划分,得到的评估结果更为稳定和可靠。
    • 更充分利用数据:验证集方法将一部分数据作为验证集,导致训练数据减少。而k折交叉验证每次只用1/k的数据作为验证集,其余数据用于训练,因此更充分地利用了所有数据。
  • 缺点
    • 计算开销更大:k折交叉验证需要进行k次训练和验证,计算量是验证集方法的k倍。
    • 实现复杂度较高:相较于验证集方法,k折交叉验证的实现稍微复杂一些。

第四题

假设我们使用某种统计学习方法对特定的预测变量X进行响应Y的预测。请详细描述如何估计我们预测的标准差。

回答:

为了估计对响应 YYY 的预测的标准差,我们可以采用以下步骤:

  1. 使用训练集训练模型:使用现有的数据训练一个统计学习模型,得到预测模型 f^(X)\hat{f}(X)f^​(X)。

  2. 获取多次预测:为了估计预测的标准差,可以采用重采样方法,例如引导法(bootstrap)或k折交叉验证(k-fold cross-validation)来获得多个预测值。

相关推荐
dazzle几秒前
Python数据结构(十):冒泡排序详解
数据结构·python·算法
平生不喜凡桃李6 分钟前
LeetCode:二叉树的最近公共祖先
算法·leetcode·职场和发展
传说故事7 分钟前
【论文自动阅读】RoboBrain:从抽象到具体的机器人操作统一大脑模型
人工智能·机器人·具身智能
czhaii10 分钟前
math.h数学函数库 ctype.h函数
c语言·c++·算法·机器学习
Piar1231sdafa11 分钟前
【计算机视觉 01】传送带煤炭识别与计量:基于RPN-X101-FPN模型的输煤量检测系统_1
人工智能·数码相机·计算机视觉
科技圈快讯11 分钟前
2026年最新AI短视频工具选型报告:内容特工队AI的效能评估与首选推荐
大数据·人工智能
错把套路当深情15 分钟前
通俗易懂的 TensorFlow 和 Transformers
人工智能·tensorflow·transformer
子午16 分钟前
【2026计算机毕设~AI项目】花朵识别系统~Python+深度学习+人工智能+算法模型+TensorFlow+图像识别
图像处理·人工智能·python·深度学习
EnochChen_16 分钟前
指定显卡的三种方式
人工智能·深度学习
YMWM_17 分钟前
LoRA论文分析:低秩适应大型语言模型
人工智能·语言模型·自然语言处理