第五章重采样方法

目录

第二题

第三题

第四题

第二题

我们现在将推导一个给定观测值是引导样本一部分的概率。假设我们从n个观测值中获得一个 引导样本。

(a) 第一个引导观测值不是 原始样本中第j个观测值的概率是多少?请证明你的答案。

(b) 第二个引导观测值不是 原始样本中第j个观测值的概率是多少?

(c) 论证原始样本中第j个观测值不在 引导样本中的概率是(1 − 1/n)^n。

(d) 当n = 5时,第j个观测值在引导样本中的概率是多少?

(e) 当n = 100时,第j个观测值在引导样本中的概率是多少?

(f) 当n = 10,000时,第j个观测值在引导样本中的概率是多少?

回答:

(a) 第一个引导观测值不是原始样本中第j个观测值的概率: 每个观测值被选中的概率是1/n。因此,第j个观测值不被选中的概率是1 - 1/n。

(b) 第二个引导观测值不是原始样本中第j个观测值的概率: 由于每次选择都是独立的,第二次选择和第一次选择相同,因此概率也是1 - 1/n。

第三题

k折交叉验证的实现步骤:

  1. 划分数据集:将整个数据集随机分成k个等大小的子集(folds)。
  2. 训练与验证 :对于每个子集:
    • 使用其中的k-1个子集作为训练集。
    • 使用剩下的1个子集作为验证集。
    • 训练模型并在验证集上进行评估,记录模型的评估结果(例如误差)。
  3. 重复:重复上述过程k次,每次选择不同的子集作为验证集。
  4. 计算平均性能:将所有k次验证结果的评估指标取平均值,作为模型的最终性能指标。

通过这种方式,可以有效利用数据进行模型评估和调优,减少过拟合的风险。

(b) k折交叉验证相对于其他方法的优点和缺点:

i. 相对于验证集方法

  • 优点
    • 更稳定和可靠的性能估计:验证集方法仅使用一次划分,评估结果可能对数据划分方式非常敏感。而k折交叉验证通过多次划分,得到的评估结果更为稳定和可靠。
    • 更充分利用数据:验证集方法将一部分数据作为验证集,导致训练数据减少。而k折交叉验证每次只用1/k的数据作为验证集,其余数据用于训练,因此更充分地利用了所有数据。
  • 缺点
    • 计算开销更大:k折交叉验证需要进行k次训练和验证,计算量是验证集方法的k倍。
    • 实现复杂度较高:相较于验证集方法,k折交叉验证的实现稍微复杂一些。

第四题

假设我们使用某种统计学习方法对特定的预测变量X进行响应Y的预测。请详细描述如何估计我们预测的标准差。

回答:

为了估计对响应 YYY 的预测的标准差,我们可以采用以下步骤:

  1. 使用训练集训练模型:使用现有的数据训练一个统计学习模型,得到预测模型 f^(X)\hat{f}(X)f^​(X)。

  2. 获取多次预测:为了估计预测的标准差,可以采用重采样方法,例如引导法(bootstrap)或k折交叉验证(k-fold cross-validation)来获得多个预测值。

相关推荐
jndingxin7 分钟前
OpenCV 图形API(63)图像结构分析和形状描述符------计算图像中非零像素的边界框函数boundingRect()
人工智能·opencv·计算机视觉
旧故新长12 分钟前
支持Function Call的本地ollama模型对比评测-》开发代理agent
人工智能·深度学习·机器学习
微学AI24 分钟前
融合注意力机制和BiGRU的电力领域发电量预测项目研究,并给出相关代码
人工智能·深度学习·自然语言处理·注意力机制·bigru
知来者逆36 分钟前
计算机视觉——速度与精度的完美结合的实时目标检测算法RF-DETR详解
图像处理·人工智能·深度学习·算法·目标检测·计算机视觉·rf-detr
一勺汤39 分钟前
YOLOv11改进-双Backbone架构:利用双backbone提高yolo11目标检测的精度
人工智能·yolo·双backbone·double backbone·yolo11 backbone·yolo 双backbone
阿让啊40 分钟前
C语言中操作字节的某一位
c语言·开发语言·数据结构·单片机·算法
武汉唯众智创41 分钟前
高职人工智能技术应用专业(计算机视觉方向)实训室解决方案
人工智能·计算机视觉·人工智能实训室·计算机视觉实训室·人工智能计算机视觉实训室
এ᭄画画的北北41 分钟前
力扣-160.相交链表
算法·leetcode·链表
Johny_Zhao1 小时前
MySQL 高可用集群搭建部署
linux·人工智能·mysql·信息安全·云计算·shell·yum源·系统运维·itsm
一只可爱的小猴子1 小时前
2022李宏毅老师机器学习课程笔记
人工智能·笔记·机器学习