第五章重采样方法

目录

第二题

第三题

第四题

第二题

我们现在将推导一个给定观测值是引导样本一部分的概率。假设我们从n个观测值中获得一个 引导样本。

(a) 第一个引导观测值不是 原始样本中第j个观测值的概率是多少?请证明你的答案。

(b) 第二个引导观测值不是 原始样本中第j个观测值的概率是多少?

(c) 论证原始样本中第j个观测值不在 引导样本中的概率是(1 − 1/n)^n。

(d) 当n = 5时,第j个观测值在引导样本中的概率是多少?

(e) 当n = 100时,第j个观测值在引导样本中的概率是多少?

(f) 当n = 10,000时,第j个观测值在引导样本中的概率是多少?

回答:

(a) 第一个引导观测值不是原始样本中第j个观测值的概率: 每个观测值被选中的概率是1/n。因此,第j个观测值不被选中的概率是1 - 1/n。

(b) 第二个引导观测值不是原始样本中第j个观测值的概率: 由于每次选择都是独立的,第二次选择和第一次选择相同,因此概率也是1 - 1/n。

第三题

k折交叉验证的实现步骤:

  1. 划分数据集:将整个数据集随机分成k个等大小的子集(folds)。
  2. 训练与验证 :对于每个子集:
    • 使用其中的k-1个子集作为训练集。
    • 使用剩下的1个子集作为验证集。
    • 训练模型并在验证集上进行评估,记录模型的评估结果(例如误差)。
  3. 重复:重复上述过程k次,每次选择不同的子集作为验证集。
  4. 计算平均性能:将所有k次验证结果的评估指标取平均值,作为模型的最终性能指标。

通过这种方式,可以有效利用数据进行模型评估和调优,减少过拟合的风险。

(b) k折交叉验证相对于其他方法的优点和缺点:

i. 相对于验证集方法

  • 优点
    • 更稳定和可靠的性能估计:验证集方法仅使用一次划分,评估结果可能对数据划分方式非常敏感。而k折交叉验证通过多次划分,得到的评估结果更为稳定和可靠。
    • 更充分利用数据:验证集方法将一部分数据作为验证集,导致训练数据减少。而k折交叉验证每次只用1/k的数据作为验证集,其余数据用于训练,因此更充分地利用了所有数据。
  • 缺点
    • 计算开销更大:k折交叉验证需要进行k次训练和验证,计算量是验证集方法的k倍。
    • 实现复杂度较高:相较于验证集方法,k折交叉验证的实现稍微复杂一些。

第四题

假设我们使用某种统计学习方法对特定的预测变量X进行响应Y的预测。请详细描述如何估计我们预测的标准差。

回答:

为了估计对响应 YYY 的预测的标准差,我们可以采用以下步骤:

  1. 使用训练集训练模型:使用现有的数据训练一个统计学习模型,得到预测模型 f^(X)\hat{f}(X)f^​(X)。

  2. 获取多次预测:为了估计预测的标准差,可以采用重采样方法,例如引导法(bootstrap)或k折交叉验证(k-fold cross-validation)来获得多个预测值。

相关推荐
✿ ༺ ོIT技术༻16 分钟前
笔试强训:Day2
开发语言·c++·笔记·算法
小oo呆2 小时前
【自然语言处理与大模型】模型压缩技术之量化
人工智能·自然语言处理
Magnum Lehar2 小时前
ApophisZerg游戏引擎项目目录展示
人工智能·vscode·编辑器·游戏引擎
飞桨PaddlePaddle2 小时前
Wan2.1和HunyuanVideo文生视频模型算法解析与功能体验丨前沿多模态模型开发与应用实战第六期
人工智能·算法·百度·音视频·paddlepaddle·飞桨·deepseek
绿算技术3 小时前
存储新势力:助力DeepSeek一体机
人工智能·科技·缓存·fpga开发
Y1nhl3 小时前
搜广推校招面经八十一
开发语言·人工智能·pytorch·深度学习·机器学习·推荐算法·搜索算法
胡攀峰3 小时前
第12章 微调生成模型
人工智能·大模型·llm·sft·强化学习·rlhf·指令微调
yuanlaile3 小时前
AI大模型自然语言处理能力案例演示
人工智能·ai·自然语言处理
Starry_hello world3 小时前
C++ 快速幂算法
c++·算法·有问必答
小白白搭建3 小时前
WordPress AI 原创文章自动生成插件 24小时全自动生成SEO原创文章 | 多语言支持 | 智能配图与排版
人工智能