筛质数(暴力法、埃氏筛、欧拉筛)

筛质数(暴力法、埃氏筛、欧拉筛)

暴力法

思路分析:

直接双for循环来求解质数

如果不设置标记只是简单地执行了break会导致内部循环(由j控制)而不是立即打印i或者跳过它。如果打印语句写到内部循环中,也会导致每个

非素数也被打印出来多次(在找到其因子之前)。

code:

cpp 复制代码
#include <iostream>
using namespace std;
int n;
int main() {
    cin >> n;
    for (int i = 2; i <= n; i++) { // 从2开始,因为1不是素数
        bool isprime = true; // 假设i是素数
        for (int j = 2; j * j <= i; j++) { // 只需要检查到sqrt(i),因为如果i有一个大于sqrt(i)的因子,那么它必然还有一个小于或等于sqrt(i)的因子
            if (i % j == 0) {
                isprime = false; // 如果找到一个因子,则i不是素数
                break;
            }
        }
        if (isprime) { // 如果i是素数,则打印它
            cout << i << " ";
        }
    }
    return 0;
}

埃氏筛

思路分析:

如果一个数是素数,那么它的倍数就不是素数

code:

cpp 复制代码
#include <iostream>
using namespace std;
int main(){
    int p[100010]={1,1};//f[i]=1代表不是素数
    int n;
    cin>>n;
    for(int i=2;i<=n;i++){
        if(p[i]==1) continue;
        for(int j=2;i*j<=n;j++){
            p[i*j]=1;
        }
    }
    for(int i=1;i<=n;i++){
        if(p[i]==0){
            cout<<i<<' ';
        }
    }
}

欧拉筛

思路分析:

基本思想:确保每个数只被其除1以外的最小质因数标记。

实现:<需要一个数组把它存储起来,

逆向思考:从最大因数开始找到最小的质因数,

在处理一个数时,需要遍历所有已经找到的质数,并当该质数是当前数的因数时退出循环,这是因为对于更大的数,当前数已不再是其最大的因数,无需继续处理。>

code:

cpp 复制代码
#include <iostream>
using namespace std;
int main(){
    int d=0;
    int p[10010]={0};
    int f[10010]={1,1};
    int n;
    cin>>n;
    for(int i=2;i<=n;i++){
        if(f[i]==0){//如果没有被标记过,那么i是质数
            p[d++]=i;//先运行后加
        }
        for(int j=0;j<d;j++){
            if(p[j]*i<=n){//标记以i为最大因数的数不是素数
                f[p[j]*i]=1;
            }
            else{
                break;
            }
            if(i%p[j]==0){//如果p[j]是i的因数,那么后面的数都不是以i为最大因数的
                break;
            }
        }
    }
    for(int i=0;i<d;i++){
        cout<<p[i]<<' ';
    }
}

如果 i 能够被 p[j] 整除(即 i % p[j] == 0),那么说明 p[j] 是 i 的一个因数。由于我们已经用 p[j] 标记了所有小于或等于n的 p[j] 的倍数,所以没有必要再用更大的质数去标记 i 的倍数。因此,可以跳出内层循环。

相关推荐
獨枭1 分钟前
C++ 项目中使用 .dll 和 .def 文件的操作指南
c++
霁月风4 分钟前
设计模式——观察者模式
c++·观察者模式·设计模式
橘色的喵5 分钟前
C++编程:避免因编译优化引发的多线程死锁问题
c++·多线程·memory·死锁·内存屏障·内存栅栏·memory barrier
泉崎9 分钟前
11.7比赛总结
数据结构·算法
你好helloworld11 分钟前
滑动窗口最大值
数据结构·算法·leetcode
何曾参静谧41 分钟前
「C/C++」C/C++ 之 变量作用域详解
c语言·开发语言·c++
AI街潜水的八角1 小时前
基于C++的决策树C4.5机器学习算法(不调包)
c++·算法·决策树·机器学习
白榆maple1 小时前
(蓝桥杯C/C++)——基础算法(下)
算法
JSU_曾是此间年少1 小时前
数据结构——线性表与链表
数据结构·c++·算法
此生只爱蛋2 小时前
【手撕排序2】快速排序
c语言·c++·算法·排序算法