NeRF从入门到放弃6:两种OpenCV去畸变模型

针孔相机和鱼眼相机的去畸变模型是不一样的。

针孔相机的畸变参数有12个,k1~k6是径向畸变参数,p1 p2是切向畸变,s1s4;而鱼眼相机是等距模型,畸变参数只有4个k1k4。

针孔相机

畸变分为径向畸变和切向畸变。

把相机平面坐标系下的点表示为极坐标(r,θ),则径向畸变表示径r变化δr,而切向变换表示角度θ变化δθ。

径向畸变是透镜改变了光线传播,使得光不再直线传播导致的;切向变换是由于透镜安装与成像平面不平行导致的。(SLAM 14讲)

此图是OpenCV官方文档示例https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html,很清晰。

桶形畸变和枕形畸变

假设只有k1,如果k1大于0,则x'' = x'(1+k1r2),x''>x',去畸变后的图像会变大,为帧形畸变;反之为桶形畸变。

针孔相机去畸变函数

复制代码
cv2.undistort(image, K, distCoeffs)

distCoeffs格式为

也就是说,如果只传入4个参数,则是k1,k2,p1,p2,后面的参数都是0.

鱼眼相机

官方文档公式推导https://docs.opencv.org/3.4/db/d58/group__calib3d__fisheye.html

鱼眼相机去畸变函数

distCoeffs为k1,k2,k3,k4

pyhton 复制代码
image_undis = cv2.fisheye.undistortImage(image, K, distCoeffs, None,
                                                     np.copy(K))

  1. 图片去畸变
python 复制代码
def undistort_images(image_dir,
                     output_dir,
                     K,
                     distCoeffs,
                     is_equidistant: bool = False):
    for img in tqdm(sorted(os.listdir(image_dir))):
        image = cv2.imread(f'{image_dir}/{img}')
        if is_equidistant:
            image_undis = cv2.fisheye.undistortImage(image, K, distCoeffs, None,
                                                     np.copy(K))
        else:
            image_undis = cv2.undistort(image, K, distCoeffs)
        cv2.imwrite(f'{output_dir}/{img}', image_undis)
  1. 参考链接

​ 针对OpenCV官方文档的翻译:https://blog.csdn.net/Thomson617/article/details/103987952

相关推荐
core51213 分钟前
深度解析DeepSeek-R1中GRPO强化学习算法
人工智能·算法·机器学习·deepseek·grpo
Surpass余sheng军13 分钟前
AI 时代下的网关技术选型
人工智能·经验分享·分布式·后端·学习·架构
说私域17 分钟前
基于开源AI智能名片链动2+1模式S2B2C商城小程序源码的所有物服务创新研究
人工智能
桃花键神28 分钟前
openFuyao在AI推理与大数据场景中的加速方案:技术特性与实践探索
大数据·人工智能
wb0430720135 分钟前
大模型(LLM)及其应用生态中的关键技术栈
人工智能
AI视觉网奇36 分钟前
图像分层 Layer Diffusion 笔记
计算机视觉
颜颜yan_1 小时前
DevUI + Vue 3 入门实战教程:从零构建AI对话应用
前端·vue.js·人工智能
Coding茶水间1 小时前
基于深度学习的无人机视角检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
JoannaJuanCV1 小时前
自动驾驶—CARLA 仿真(1)安装与demo测试
人工智能·机器学习·自动驾驶·carla
林林宋1 小时前
Step-Audio-R1
人工智能