NeRF从入门到放弃6:两种OpenCV去畸变模型

针孔相机和鱼眼相机的去畸变模型是不一样的。

针孔相机的畸变参数有12个,k1~k6是径向畸变参数,p1 p2是切向畸变,s1s4;而鱼眼相机是等距模型,畸变参数只有4个k1k4。

针孔相机

畸变分为径向畸变和切向畸变。

把相机平面坐标系下的点表示为极坐标(r,θ),则径向畸变表示径r变化δr,而切向变换表示角度θ变化δθ。

径向畸变是透镜改变了光线传播,使得光不再直线传播导致的;切向变换是由于透镜安装与成像平面不平行导致的。(SLAM 14讲)

此图是OpenCV官方文档示例https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html,很清晰。

桶形畸变和枕形畸变

假设只有k1,如果k1大于0,则x'' = x'(1+k1r2),x''>x',去畸变后的图像会变大,为帧形畸变;反之为桶形畸变。

针孔相机去畸变函数

复制代码
cv2.undistort(image, K, distCoeffs)

distCoeffs格式为

也就是说,如果只传入4个参数,则是k1,k2,p1,p2,后面的参数都是0.

鱼眼相机

官方文档公式推导https://docs.opencv.org/3.4/db/d58/group__calib3d__fisheye.html

鱼眼相机去畸变函数

distCoeffs为k1,k2,k3,k4

pyhton 复制代码
image_undis = cv2.fisheye.undistortImage(image, K, distCoeffs, None,
                                                     np.copy(K))

  1. 图片去畸变
python 复制代码
def undistort_images(image_dir,
                     output_dir,
                     K,
                     distCoeffs,
                     is_equidistant: bool = False):
    for img in tqdm(sorted(os.listdir(image_dir))):
        image = cv2.imread(f'{image_dir}/{img}')
        if is_equidistant:
            image_undis = cv2.fisheye.undistortImage(image, K, distCoeffs, None,
                                                     np.copy(K))
        else:
            image_undis = cv2.undistort(image, K, distCoeffs)
        cv2.imwrite(f'{output_dir}/{img}', image_undis)
  1. 参考链接

​ 针对OpenCV官方文档的翻译:https://blog.csdn.net/Thomson617/article/details/103987952

相关推荐
AAD555888996 分钟前
压接工具检测识别----RPN-R50-Caffe-C4模型训练与优化
人工智能·深度学习
OLOLOadsd1239 分钟前
基于NAS-FCOS的拥挤路段车辆检测系统:R50-Caffe-FPN-NASHead-GN-Head模型训练与优化_1
人工智能·深度学习
AIArchivist9 分钟前
破解肝胆慢病管理痛点,AI让长期守护更精准高效
人工智能
laplace012310 分钟前
Claude Code 逆向工程报告 笔记(学习记录)
数据库·人工智能·笔记·学习·agent·rag
AiTEN_Robotics1 小时前
AMR机器人:如何满足现代物料搬运的需求
人工智能·机器人·自动化
产品人卫朋1 小时前
卫朋:IPD流程落地 - 市场地图拆解篇
大数据·人工智能·物联网
沛沛老爹1 小时前
跨平台Agent Skills开发:适配器模式赋能提示词优化与多AI应用无缝集成
人工智能·agent·适配器模式·rag·企业转型·skills
zhangshuang-peta1 小时前
适用于MCP的Nginx类代理:为何AI工具集成需要网关层
人工智能·ai agent·mcp·peta
Network_Engineer1 小时前
从零手写RNN&BiRNN:从原理到双向实现
人工智能·rnn·深度学习·神经网络
想进部的张同学1 小时前
week1-day5-CNN卷积补充感受野-CUDA 一、CUDA 编程模型基础 1.1 CPU vs GPU 架构线程索引与向量乘法
人工智能·神经网络·cnn