NeRF从入门到放弃6:两种OpenCV去畸变模型

针孔相机和鱼眼相机的去畸变模型是不一样的。

针孔相机的畸变参数有12个,k1~k6是径向畸变参数,p1 p2是切向畸变,s1~s4;而鱼眼相机是等距模型,畸变参数只有4个k1~k4。

针孔相机

畸变分为径向畸变和切向畸变。

把相机平面坐标系下的点表示为极坐标(r,θ),则径向畸变表示径r变化δr,而切向变换表示角度θ变化δθ。

径向畸变是透镜改变了光线传播,使得光不再直线传播导致的;切向变换是由于透镜安装与成像平面不平行导致的。(SLAM 14讲)

此图是OpenCV官方文档示例https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html,很清晰。

桶形畸变和枕形畸变

假设只有k1,如果k1大于0,则x'' = x'(1+k1r2),x''>x',去畸变后的图像会变大,为帧形畸变;反之为桶形畸变。

针孔相机去畸变函数

cv2.undistort(image, K, distCoeffs)

distCoeffs格式为

也就是说,如果只传入4个参数,则是k1,k2,p1,p2,后面的参数都是0.

鱼眼相机

官方文档公式推导https://docs.opencv.org/3.4/db/d58/group__calib3d__fisheye.html

鱼眼相机去畸变函数

distCoeffs为k1,k2,k3,k4

pyhton 复制代码
image_undis = cv2.fisheye.undistortImage(image, K, distCoeffs, None,
                                                     np.copy(K))

  1. 图片去畸变
python 复制代码
def undistort_images(image_dir,
                     output_dir,
                     K,
                     distCoeffs,
                     is_equidistant: bool = False):
    for img in tqdm(sorted(os.listdir(image_dir))):
        image = cv2.imread(f'{image_dir}/{img}')
        if is_equidistant:
            image_undis = cv2.fisheye.undistortImage(image, K, distCoeffs, None,
                                                     np.copy(K))
        else:
            image_undis = cv2.undistort(image, K, distCoeffs)
        cv2.imwrite(f'{output_dir}/{img}', image_undis)
  1. 参考链接

​ 针对OpenCV官方文档的翻译:https://blog.csdn.net/Thomson617/article/details/103987952

相关推荐
今天又是学习1 小时前
深度学习5
人工智能·深度学习
新加坡内哥谈技术1 小时前
RAG架构类型
大数据·人工智能·语言模型·chatgpt
Topstip1 小时前
iOS 19 重大更新泄露,将带来更“聪明”的 Siri 挑战 ChatGPT
人工智能·ios·ai·chatgpt
Nerinic2 小时前
深度学习基础1
人工智能·深度学习
数字扫地僧2 小时前
深度学习与知识图谱嵌入的结合:从理论到实践
人工智能·深度学习·知识图谱
真理Eternal2 小时前
手搓人工智能—聚类分析(下)谱系聚类与K-mean聚类
人工智能·机器学习
ZOMI酱2 小时前
【AI系统】昇腾 AI 架构介绍
人工智能·架构
说私域2 小时前
精准零售驱动下的中国零售业变革与“开源 2+1 链动小程序”应用探究
人工智能·小程序·开源
AI视觉网奇2 小时前
WonderJourney 学习笔记
人工智能
钢铁男儿3 小时前
图像分割——区域增长
图像处理·人工智能·计算机视觉