kafka(四)消息类型

一、同步消息

1、生产者

同步发送的意思就是,一条消息发送之后,会阻塞当前线程,直至返回 ack。 由于 send 方法返回的是一个 Future 对象,根据 Futrue 对象的特点,我们也可以实现同 步发送的效果,只需在调用 Future 对象的 get 方发即可。

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
 
import java.util.Properties;
import java.util.concurrent.ExecutionException;
 
public class CustomProducerSync {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        // 1. 创建kafka生产者的配置对象
        Properties properties = new Properties();
        // 2. 给kafka配置对象添加配置信息:bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");
        // key,value序列化(必须):
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
        // 3. 创建kafka生产者对象
        KafkaProducer<String,String> kafkaProducer = new KafkaProducer<String,String>(properties);
        // 4. 调用send方法,发送消息
        for (int i = 0; i < 10; i++) {
            // 默认为异步发送
            kafkaProducer.send(new ProducerRecord<>("first1", "atguigu" + i));
            // 末尾加get为同步发送
            kafkaProducer.send(new ProducerRecord<>("first1", "atguigu" + i)).get();
        }
 
        // 5. 关闭资源
        kafkaProducer.close();
    }
}

二、异步消息

1、生产者

异步消息有两种:

1.1、普通异步
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
 
import java.util.Properties;
 
public class CustomProducer {
    public static void main(String[] args) {
        // 1. 创建kafka生产者的配置对象
        Properties properties = new Properties();
        // 2. 给kafka配置对象添加配置信息:bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");
        // key,value序列化(必须):
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
        // 3. 创建kafka生产者对象
        KafkaProducer<String,String> kafkaProducer = new KafkaProducer<String,String>(properties);
        // 4. 调用send方法,发送消息
        for (int i = 0; i < 10; i++) {
            kafkaProducer.send(new ProducerRecord<>("first", "wtyy"));
        }
        // 5. 关闭资源
        kafkaProducer.close();
    }
}
1.2、带回调函数的异步发送

回调函数会在 producer 收到 ack 时调用,为异步调用,该方法有两个参数,分别是 RecordMetadata 和 Exception,如果 Exception 为 null,说明消息发送成功,如果 Exception 不为 null,说明消息发送失败。

注意:消息发送失败会自动重试,不需要我们在回调函数中手动重试。

import org.apache.kafka.clients.producer.*;
 
import java.util.Properties;
 
public class CustomProducerCallBack {
    public static void main(String[] args) {
        // 1. 创建kafka生产者的配置对象
        Properties properties = new Properties();
        // 2. 给kafka配置对象添加配置信息:bootstrap.servers
        properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "hadoop102:9092");
        // key,value序列化(必须):
        // 序列化器的serialization是一个接口,找到他的实现类
        // 我们一般都是使用String
        properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
        properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
        // 3. 创建kafka生产者对象
        KafkaProducer<String,String> kafkaProducer = new KafkaProducer<String,String>(properties);
        // 4. 调用send方法,发送消息
        for (int i = 0; i < 10; i++) {
            kafkaProducer.send(new ProducerRecord<>("first1", "atguigu" + i),
                    new Callback() {
                       @Override
                       public void onCompletion(RecordMetadata metadata, Exception exception) {
                           //(1)消息发送成功  exception == null  接受到服务端ack消息   调用该方法
                           //(2)消息发送失败  exception != null  也会调用该方法
                           if (exception == null) {
                               System.out.println(metadata);//使用打印演示
                           }else{
                               exception.printStackTrace();//打印异常信息
                           }
                       }
                    });
        }
        // 5. 关闭资源
        kafkaProducer.close();
    }
}

三、顺序消息

以订单为例,

  • 生产者将相同的key的订单状态事件推送到kafka的同一分区
  • kafka 消费者接收消息
  • 消费者将消息提交给线程池
  • 线程池根据接收到的消息,将订单状态事件使用路由策略选择其中一个线程,将具有相同路由key的事件发送到同一个线程的阻塞队列中
  • 单个线程不停的从阻塞队列获取订单状态消息消费
@RestController
public class OrderController {

    @Autowired
    private KafkaTemplate<String, String> kafkaTemplate;

    @GetMapping("/send")
    public String send() throws InterruptedException {
        int size = 1000;
        for (int i = 0; i < size; i++) {
            OrderDto orderDto = new InterOrderDto();
            orderDto.setOrderNo(i + "");
            orderDto.setPayStatus(getStatus(0));
            orderDto.setTimestamp(System.currentTimeMillis());
            //相同的key发送到相同的分区
            kafkaTemplate.send(Constants.TOPIC_ORDER, orderDto.getOrderNo(), JSON.toJSONString(orderDto));
            TimeUnit.MILLISECONDS.sleep(10);
            orderDto.setPayStatus(getStatus(1));
            orderDto.setTimestamp(System.currentTimeMillis());
            kafkaTemplate.send(Constants.TOPIC_ORDER, orderDto.getOrderNo(), JSON.toJSONString(orderDto));
            TimeUnit.MILLISECONDS.sleep(10);
            orderDto.setPayStatus(getStatus(2));
            orderDto.setTimestamp(System.currentTimeMillis());
            kafkaTemplate.send(Constants.TOPIC_ORDER, orderDto.getOrderNo(), JSON.toJSONString(orderDto));
        }
        return "success";
    }

    private String getStatus(int status){
        return status == 0 ? "待支付" : status == 1 ? "已支付" : "支付失败";
    }
}
相关推荐
xiao-xiang2 小时前
kafka-保姆级配置说明(producer)
分布式·kafka
黄名富3 小时前
Spring Cloud — 深入了解Eureka、Ribbon及Feign
分布式·spring·spring cloud·微服务·eureka·ribbon
小丑西瓜6664 小时前
分布式简单理解
linux·redis·分布式·架构·架构演变
优人ovo4 小时前
详解分布式ID实践
分布式
Java资深爱好者4 小时前
在Spark中,如何使用DataFrame进行高效的数据处理
大数据·分布式·spark
布谷歌5 小时前
Oops! 更改field的数据类型,影响到rabbitmq消费了...(有关于Java序列化)
java·开发语言·分布式·rabbitmq·java-rabbitmq
一个假的前端男5 小时前
RabbitMQ 消息队列 优化发送邮件
分布式·rabbitmq·ruby
被程序耽误的胡先生5 小时前
java中 kafka简单应用
java·开发语言·kafka
A尘埃5 小时前
关闭超时订单和七天自动确认收货+RabbitMQ规范
分布式·rabbitmq
2501_903238656 小时前
深入理解 Kafka 主题分区机制
分布式·kafka·个人开发