Java模拟马尔可夫链类问题的验证

马尔可夫链(Markov Chain, MC)是概率论数理统计中具有马尔可夫性质(Markov property)且存在于离散的指数集(index set)和状态空间(state space)内的随机过程(stochastic process) [1-2]。适用于连续指数集的马尔可夫链被称为马尔可夫过程(Markov process),但有时也被视为马尔可夫链的子集,即连续时间马尔可夫链(Continuous-Time MC, CTMC),与离散时间马尔可夫链(Discrete-Time MC, DTMC)相对应,因此马尔可夫链是一个较为宽泛的概念 [2]。

马尔可夫链可通过转移矩阵和转移图定义,除马尔可夫性外,马尔可夫链可能具有不可约性、常返性、周期性和遍历性。一个不可约和正常返的马尔可夫链是严格平稳的马尔可夫链,拥有唯一的平稳分布。遍历马尔可夫链(ergodic MC)的极限分布收敛于其平稳分布 [1]。

马尔可夫链可被应用于蒙特卡罗方法中,形成马尔可夫链蒙特卡罗(Markov Chain Monte Carlo, MCMC) [2-3],也被用于动力系统、化学反应、排队论、市场行为和信息检索的数学建模。此外作为结构最简单的马尔可夫模型(Markov model),一些机器学习算法,例如隐马尔可夫模型(Hidden Markov Model, HMM)、马尔可夫随机场(Markov Random Field, MRF)和马尔可夫决策过程(Markov decision process, MDP)以马尔可夫链为理论基础 [4]。

马尔可夫链的命名来自俄国数学家安德雷·马尔可夫(Андрей Андреевич Марков)以纪念其首次提出马尔可夫链和对其收敛性质所做的研究 [5]。

问题概述

注意:此图片引用了b站up主的视频 视频源地址视频源地址https://www.bilibili.com/video/BV1ir421F7nq?vd_source=0517d752c26aa2e7b4afc5fdf2257813

主要思路:随机生成大量数据然后进行分析

Java代码部分

java 复制代码
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class 暴击 {
    public static void main(String[] args) {
        Random random = new Random();
        List<Integer> integers = new ArrayList<>();
        for (int i = 0; i < 99999999; i++) {
            int n = random.nextInt(3) + 1;
            if (n == 2) {
                n = 1;
            } else if (n == 3) {
                n = 2;
            }
            integers.add(n);
        }
        int n = 0;//设置计数器
        for (int i = 0; i < integers.size(); i++) {
            if (integers.get(i) == 1) {
                n = n + 1;
            }
            if (integers.get(i) == 2) {
                n=0;
            }
            if (n == 3) {
                n = 0;
                integers.set(i, 2);
            }
        }
        double m = 0;
        for (int i : integers) {
            if (i == 2) {
                m = m + 1;
            }
        }
        System.out.println(m/integers.size());
    }
}

实验过程

通过随机生成1到3数字,用来模拟33.333%的暴击率。

将2全部改为1,3改为2,用1代表不暴击,用2代表暴击。
将其放入ArrayList集合中,然后遍历集合。

设置一个计数器初始值为0,如果遍历到的数为1则计数器+1,

如果遍历到的数字为2,则对计数器清零

如果计数器为3,则代表连续3次不暴击,将此时遍历到的数据改为2(3次必定暴击)
再次遍历集合,记录2出现的次数,并除以元素的数量求出暴击率

与视频作者结论一致

相关推荐
阑梦清川18 小时前
数学建模启发式算法篇(一)---遗传算法
算法·数学建模·启发式算法
羊小猪~~2 天前
数学建模(基于Python实现)--灰色关联分析法讲解,含案例
开发语言·python·数学建模
高登先生2 天前
汇聚全球前沿科技产品,北京智能科技产业展览会·世亚智博会
大数据·人工智能·科技·数学建模·能源
Ricciflows3 天前
分析学大师Elias M. Stein的分析系列教材
线性代数·数学建模·矩阵·概率论·抽象代数·拓扑学·傅立叶分析
weixin_430153383 天前
硬件在环仿真建模之电路拓扑建模与数学建模
数学建模
CodeCraft Studio3 天前
定性数据分析 (QDA) 软件NVivo V15现已发布!融合AI让数据分析更出色!
大数据·人工智能·算法·数学建模·数据分析
羊羊20354 天前
线性代数:Matrix2x2和Matrix3x3
线性代数·数学建模·unity3d
张焚雪5 天前
关于数学建模的一些介绍
机器学习·数学建模
神里流~霜灭5 天前
MATLAB-数学建模-无约束规划求解方法(非线性规划)
java·c++·python·算法·数学建模·matlab
热心网友俣先生6 天前
2024 年(第五届)“大湾区杯”粤港澳金融数学建模竞赛B 题
数学建模·金融