Java模拟马尔可夫链类问题的验证

马尔可夫链(Markov Chain, MC)是概率论数理统计中具有马尔可夫性质(Markov property)且存在于离散的指数集(index set)和状态空间(state space)内的随机过程(stochastic process) [1-2]。适用于连续指数集的马尔可夫链被称为马尔可夫过程(Markov process),但有时也被视为马尔可夫链的子集,即连续时间马尔可夫链(Continuous-Time MC, CTMC),与离散时间马尔可夫链(Discrete-Time MC, DTMC)相对应,因此马尔可夫链是一个较为宽泛的概念 [2]。

马尔可夫链可通过转移矩阵和转移图定义,除马尔可夫性外,马尔可夫链可能具有不可约性、常返性、周期性和遍历性。一个不可约和正常返的马尔可夫链是严格平稳的马尔可夫链,拥有唯一的平稳分布。遍历马尔可夫链(ergodic MC)的极限分布收敛于其平稳分布 [1]。

马尔可夫链可被应用于蒙特卡罗方法中,形成马尔可夫链蒙特卡罗(Markov Chain Monte Carlo, MCMC) [2-3],也被用于动力系统、化学反应、排队论、市场行为和信息检索的数学建模。此外作为结构最简单的马尔可夫模型(Markov model),一些机器学习算法,例如隐马尔可夫模型(Hidden Markov Model, HMM)、马尔可夫随机场(Markov Random Field, MRF)和马尔可夫决策过程(Markov decision process, MDP)以马尔可夫链为理论基础 [4]。

马尔可夫链的命名来自俄国数学家安德雷·马尔可夫(Андрей Андреевич Марков)以纪念其首次提出马尔可夫链和对其收敛性质所做的研究 [5]。

问题概述

注意:此图片引用了b站up主的视频 视频源地址视频源地址https://www.bilibili.com/video/BV1ir421F7nq?vd_source=0517d752c26aa2e7b4afc5fdf2257813

主要思路:随机生成大量数据然后进行分析

Java代码部分

java 复制代码
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
public class 暴击 {
    public static void main(String[] args) {
        Random random = new Random();
        List<Integer> integers = new ArrayList<>();
        for (int i = 0; i < 99999999; i++) {
            int n = random.nextInt(3) + 1;
            if (n == 2) {
                n = 1;
            } else if (n == 3) {
                n = 2;
            }
            integers.add(n);
        }
        int n = 0;//设置计数器
        for (int i = 0; i < integers.size(); i++) {
            if (integers.get(i) == 1) {
                n = n + 1;
            }
            if (integers.get(i) == 2) {
                n=0;
            }
            if (n == 3) {
                n = 0;
                integers.set(i, 2);
            }
        }
        double m = 0;
        for (int i : integers) {
            if (i == 2) {
                m = m + 1;
            }
        }
        System.out.println(m/integers.size());
    }
}

实验过程

通过随机生成1到3数字,用来模拟33.333%的暴击率。

将2全部改为1,3改为2,用1代表不暴击,用2代表暴击。
将其放入ArrayList集合中,然后遍历集合。

设置一个计数器初始值为0,如果遍历到的数为1则计数器+1,

如果遍历到的数字为2,则对计数器清零

如果计数器为3,则代表连续3次不暴击,将此时遍历到的数据改为2(3次必定暴击)
再次遍历集合,记录2出现的次数,并除以元素的数量求出暴击率

与视频作者结论一致

相关推荐
subject625Ruben20 小时前
随机森林(Random Forest, RF)筛选回归数据(处理异常值)
算法·随机森林·数学建模·回归
数维学长9861 天前
《译文》2024年11月数维杯国际大学生数学建模挑战赛题目
数学建模
2023数学建模国赛比赛资料分享1 天前
2024年第十四届APMCM亚太杯数学建模A题B题C题思路+代码解析汇总
数学建模·2024第十四届亚太杯数模·2024亚太杯数学建模国际上·2024亚太杯数学建模国际赛
张焚雪1 天前
关于图论建模的一份介绍
python·数学建模·图论
IT猿手3 天前
多目标优化算法:多目标红嘴蓝鹊优化算法(MORBMO)求解UF1-UF10,提供完整MATLAB代码
开发语言·人工智能·算法·数学建模·matlab·智能优化算法
CodeCraft Studio4 天前
【案例】定性数据分析软件NVivo 在医疗保健领域的应用
数学建模·数据分析·健康医疗
IT猿手4 天前
多目标优化算法:多目标蛇鹫优化算法(MOSBOA)求解ZDT1、ZDT2、ZDT3、ZDT4、ZDT6,提供完整MATLAB代码
算法·数学建模·matlab·多目标优化·多目标优化算法
小何数模5 天前
24 年第十届数维杯国际数模竞赛赛题浅析
数学建模
数模竞赛Paid answer7 天前
2023年MathorCup数学建模B题城市轨道交通列车时刻表优化问题解题全过程文档加程序
数学建模·数据分析·mathorcup
数模竞赛Paid answer8 天前
2023年MathorCup数学建模A题量子计算机在信用评分卡组合优化中的应用解题全过程文档加程序
数学建模·数据分析·mathorcup