【昇思25天学习打卡营打卡指南-第二天】张量Tensor

张量 Tensor

定义

张量(Tensor)是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数,这些线性关系的基本例子有内积、外积、线性映射以及笛卡儿积。其坐标在  n n n 维空间内,有  n r n^{r} nr 个分量的一种量,其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。 r r r 称为该张量的秩或阶(与矩阵的秩和阶均无关系)。

张量是一种特殊的数据结构,与数组和矩阵非常相似。

张量API地址:Tensor

张量也是MindSpore网络运算中的基本数据结构,本教程主要介绍张量和稀疏张量的属性及用法。

创建张量

张量的创建方式有多种,构造张量时,支持传入Tensorfloatintbooltuplelistnumpy.ndarray类型。

  • 根据数据直接生成

    可以根据数据创建张量,数据类型可以设置或者通过框架自动推断。

代码示例:

python 复制代码
data = [1, 0, 1, 0]
x_data = Tensor(data)
print(x_data, x_data.shape, x_data.dtype)

运行结果:

[1 0 1 0] (4,) Int64
  • 从NumPy数组生成

    可以从NumPy数组创建张量。

代码示例

python 复制代码
np_array = np.array(data)
x_np = Tensor(np_array)
print(x_np, x_np.shape, x_np.dtype)

运行结果

python 复制代码
[1 0 1 0] (4,) Int64
  • 使用init初始化器构造张量

    当使用init初始化器对张量进行初始化时,支持传入的参数有initshapedtype

代码示例

python 复制代码
from mindspore.common.initializer import One, Normal

# Initialize a tensor with ones
tensor1 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=One())
# Initialize a tensor from normal distribution
tensor2 = mindspore.Tensor(shape=(2, 2), dtype=mindspore.float32, init=Normal())

print("tensor1:\n", tensor1)
print("tensor2:\n", tensor2)

运行结果:

tensor1:
 [[1. 1.]
 [1. 1.]]
tensor2:
 [[-0.022815   -0.01483201]
 [ 0.026975   -0.00120748]]

init主要用于并行模式下的延后初始化,在正常情况下不建议使用init对参数进行初始化。

  • 继承另一个张量的属性,形成新的张量

代码示例

python 复制代码
from mindspore import ops

x_ones = ops.ones_like(x_data)
print(f"Ones Tensor: \n {x_ones} \n")

x_zeros = ops.zeros_like(x_data)
print(f"Zeros Tensor: \n {x_zeros} \n")

运行结果:

Ones Tensor: 
 [1 1 1 1] 

张量的属性

张量的属性包括形状、数据类型、转置张量、单个元素大小、占用字节数量、维数、元素个数和每一维步长。

  • 形状(shape):Tensor的shape,是一个tuple。

  • 数据类型(dtype):Tensor的dtype,是MindSpore的一个数据类型。

  • 单个元素大小(itemsize): Tensor中每一个元素占用字节数,是一个整数。

  • 占用字节数量(nbytes): Tensor占用的总字节数,是一个整数。

  • 维数(ndim): Tensor的秩,也就是len(tensor.shape),是一个整数。

  • 元素个数(size): Tensor中所有元素的个数,是一个整数。

  • 每一维步长(strides): Tensor每一维所需要的字节数,是一个tuple。

代码示例

python 复制代码
x = Tensor(np.array([[1, 2], [3, 4]]), mindspore.int32)

print("x_shape:", x.shape)
print("x_dtype:", x.dtype)
print("x_itemsize:", x.itemsize)
print("x_nbytes:", x.nbytes)
print("x_ndim:", x.ndim)
print("x_size:", x.size)
print("x_strides:", x.strides)

运行结果

x_shape: (2, 2)
x_dtype: Int32
x_itemsize: 4
x_nbytes: 16
x_ndim: 2
x_size: 4
x_strides: (8, 4)

张量索引

Tensor索引与Numpy索引类似,索引从0开始编制,负索引表示按倒序编制,冒号:...用于对数据进行切片。

代码示例

python 复制代码
tensor = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))

print("First row: {}".format(tensor[0]))
print("value of bottom right corner: {}".format(tensor[1, 1]))
print("Last column: {}".format(tensor[:, -1]))
print("First column: {}".format(tensor[..., 0]))

运行结果

First row: [0. 1.]
value of bottom right corner: 3.0

张量运算

张量之间有很多运算,包括算术、线性代数、矩阵处理(转置、标引、切片)、采样等,张量运算和NumPy的使用方式类似,下面介绍其中几种操作。

普通算术运算有:加(+)、减(-)、乘(*)、除(/)、取模(%)、整除(//)。

代码示例

python 复制代码
x = Tensor(np.array([1, 2, 3]), mindspore.float32)
y = Tensor(np.array([4, 5, 6]), mindspore.float32)

output_add = x + y
output_sub = x - y
output_mul = x * y
output_div = y / x
output_mod = y % x
output_floordiv = y // x

print("add:", output_add)
print("sub:", output_sub)
print("mul:", output_mul)
print("div:", output_div)
print("mod:", output_mod)
print("floordiv:", output_floordiv)
运行结果

add: [5. 7. 9.]

sub: [-3. -3. -3.]

mul: [ 4. 10. 18.]

div: [4. 2.5 2. ]

mod: [0. 1. 0.]

floordiv: [4. 2. 2.]

concat将给定维度上的一系列张量连接起来。
```python
data1 = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))
data2 = Tensor(np.array([[4, 5], [6, 7]]).astype(np.float32))
output = ops.concat((data1, data2), axis=0)

print(output)
print("shape:\n", output.shape)

运行结果

[[0. 1.]
 [2. 3.]
 [4. 5.]
 [6. 7.]]
shape:
 (4, 2)

stack则是从另一个维度上将两个张量合并起来。

python 复制代码
data1 = Tensor(np.array([[0, 1], [2, 3]]).astype(np.float32))
data2 = Tensor(np.array([[4, 5], [6, 7]]).astype(np.float32))
output = ops.stack([data1, data2])

print(output)
print("shape:\n", output.shape)

运行结果

[[[0. 1.]
  [2. 3.]]

 [[4. 5.]
  [6. 7.]]]
shape:
 (2, 2, 2)

Tensor与NumPy转换

Tensor可以和NumPy进行互相转换。

Tensor转换为NumPy

与张量创建相同,使用 Tensor.asnumpy() 将Tensor变量转换为NumPy变量。

python 复制代码
t = Tensor([1., 1., 1., 1., 1.])
print(f"t: {t}", type(t))
n = t.asnumpy()
print(f"n: {n}", type(n))

运行结果

t: [1. 1. 1. 1. 1.] <class 'mindspore.common.tensor.Tensor'>
n: [1. 1. 1. 1. 1.] <class 'numpy.ndarray'>

NumPy转换为Tensor

使用Tensor()将NumPy变量转换为Tensor变量。

python 复制代码
n = np.ones(5)
t = Tensor.from_numpy(n)

np.add(n, 1, out=n)
print(f"n: {n}", type(n))
print(f"t: {t}", type(t))

运行结果

n: [2. 2. 2. 2. 2.] <class 'numpy.ndarray'>
t: [2. 2. 2. 2. 2.] <class 'mindspore.common.tensor.Tensor'>

稀疏张量

稀疏张量是一种特殊张量,其中绝大部分元素的值为零。

在某些应用场景中(比如推荐系统、分子动力学、图神经网络等),数据的特征是稀疏的,若使用普通张量表征这些数据会引入大量不必要的计算、存储和通讯开销。这时就可以使用稀疏张量来表征这些数据。

MindSpore现在已经支持最常用的CSRCOO两种稀疏数据格式。

常用稀疏张量的表达形式是<indices:Tensor, values:Tensor, shape:Tensor>。其中,indices表示非零下标元素, values表示非零元素的值,shape表示的是被压缩的稀疏张量的形状。在这个结构下,我们定义了三种稀疏张量结构:CSRTensorCOOTensorRowTensor

CSRTensor

CSR(Compressed Sparse Row)稀疏张量格式有着高效的存储与计算的优势。其中,非零元素的值存储在values中,非零元素的位置存储在indptr(行)和indices(列)中。各参数含义如下:

  • indptr: 一维整数张量, 表示稀疏数据每一行的非零元素在values中的起始位置和终止位置, 索引数据类型支持int16、int32、int64。

  • indices: 一维整数张量,表示稀疏张量非零元素在列中的位置, 与values长度相等,索引数据类型支持int16、int32、int64。

  • values: 一维张量,表示CSRTensor相对应的非零元素的值,与indices长度相等。

  • shape: 表示被压缩的稀疏张量的形状,数据类型为Tuple,目前仅支持二维CSRTensor

CSRTensor的详细文档,请参考mindspore.CSRTensor

下面给出一些CSRTensor的使用示例:

python 复制代码
indptr = Tensor([0, 1, 2])
indices = Tensor([0, 1])
values = Tensor([1, 2], dtype=mindspore.float32)
shape = (2, 4)

# Make a CSRTensor
csr_tensor = CSRTensor(indptr, indices, values, shape)

print(csr_tensor.astype(mindspore.float64).dtype)

运行结果
Float64

上述代码会生成如下所示的CSRTensor:

[ 1 0 0 0 0 2 0 0 ] \left[ \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \end{matrix} \right] [10020000]

COOTensor

COO(Coordinate Format)稀疏张量格式用来表示某一张量在给定索引上非零元素的集合,若非零元素的个数为N,被压缩的张量的维数为ndims。各参数含义如下:

  • indices: 二维整数张量,每行代表非零元素下标。形状:[N, ndims], 索引数据类型支持int16、int32、int64。

  • values: 一维张量,表示相对应的非零元素的值。形状:[N]

  • shape: 表示被压缩的稀疏张量的形状,目前仅支持二维COOTensor

COOTensor的详细文档,请参考mindspore.COOTensor

下面给出一些COOTensor的使用示例:

python 复制代码
indices = Tensor([[0, 1], [1, 2]], dtype=mindspore.int32)
values = Tensor([1, 2], dtype=mindspore.float32)
shape = (3, 4)

# Make a COOTensor
coo_tensor = COOTensor(indices, values, shape)

print(coo_tensor.values)
print(coo_tensor.indices)
print(coo_tensor.shape)
print(coo_tensor.astype(mindspore.float64).dtype)  # COOTensor to float64

运行结果

[1. 2.]
[[0 1]
 [1 2]]
(3, 4)
Float64

上述代码会生成如下所示的COOTensor:

[ 0 1 0 0 0 0 2 0 0 0 0 0 ] \left[ \begin{matrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{matrix} \right] 000100020000

附录

显示名字和学习时间代码

python 复制代码
import time
print(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())),'JeffDing')
相关推荐
一棵开花的树,枝芽无限靠近你16 分钟前
【PPTist】添加PPT模版
前端·学习·编辑器·html
VertexGeek35 分钟前
Rust学习(八):异常处理和宏编程:
学习·算法·rust
二进制_博客1 小时前
Flink学习连载文章4-flink中的各种转换操作
大数据·学习·flink
codebolt2 小时前
ADS学习记录
学习
Komorebi.py3 小时前
【Linux】-学习笔记05
linux·笔记·学习
朝九晚五ฺ10 小时前
【Linux探索学习】第十四弹——进程优先级:深入理解操作系统中的进程优先级
linux·运维·学习
猫爪笔记12 小时前
前端:HTML (学习笔记)【1】
前端·笔记·学习·html
pq113_612 小时前
ftdi_sio应用学习笔记 3 - GPIO
笔记·学习·ftdi_sio
澄澈i12 小时前
设计模式学习[8]---原型模式
学习·设计模式·原型模式
爱米的前端小笔记13 小时前
前端八股自学笔记分享—页面布局(二)
前端·笔记·学习·面试·求职招聘