给定一个实数序列,设计一个最有效的算法,找到一个总和最大的区间

这个问题是经典的最大子数组和问题,也称为 Kadane 算法。我们可以使用动态规划的方法来高效地解决它。以下是解决方案的 C++ 实现:

复制代码
class Solution {
public:
    vector<int> maxSubArray(vector<double>& nums) {
        if (nums.empty()) return {};
        
        double maxSum = nums[0], currentSum = nums[0];
        int start = 0, end = 0, tempStart = 0;
        
        for (int i = 1; i < nums.size(); i++) {
            if (currentSum + nums[i] > nums[i]) {
                currentSum += nums[i];
            } else {
                currentSum = nums[i];
                tempStart = i;
            }
            
            if (currentSum > maxSum) {
                maxSum = currentSum;
                start = tempStart;
                end = i;
            }
        }
        
        return {start, end, maxSum};
    }
};

这个算法的工作原理如下:

  1. 我们使用两个变量:maxSum 记录到目前为止找到的最大和,currentSum 记录当前子数组的和。
  2. 我们还使用三个索引:startend 记录最大和子数组的起始和结束位置,tempStart 记录当前子数组的起始位置。
  3. 我们从数组的第二个元素开始遍历:
    • 如果将当前元素加入到现有的子数组中会使和增加,我们就将其加入。
    • 否则,我们开始一个新的子数组,从当前元素开始。
  4. 每次我们更新 currentSum 后,我们都会检查它是否大于 maxSum。如果是,我们更新 maxSum 并记录新的起始和结束位置。
  5. 最后,我们返回一个包含最大和子数组的起始位置、结束位置和最大和的向量。

这个算法的时间复杂度是 O(n),其中 n 是数组的长度。它只需要遍历数组一次,因此是非常高效的。空间复杂度是 O(1),因为我们只使用了几个额外的变量,不管输入数组的大小如何。

这个算法可以处理包含正数、负数和零的实数序列。它也可以处理全负数的情况,在这种情况下,它会返回数组中最大的单个元素。

相关推荐
Jay20021111 小时前
【机器学习】23-25 决策树 & 树集成
算法·决策树·机器学习
dragoooon341 小时前
[优选算法专题九.链表 ——NO.53~54合并 K 个升序链表、 K 个一组翻转链表]
数据结构·算法·链表
xlq223227 小时前
22.多态(上)
开发语言·c++·算法
666HZ6667 小时前
C语言——高精度加法
c语言·开发语言·算法
sweet丶7 小时前
iOS MMKV原理整理总结:比UserDefaults快100倍的存储方案是如何炼成的?
算法·架构
云里雾里!8 小时前
力扣 209. 长度最小的子数组:滑动窗口解法完整解析
数据结构·算法·leetcode
CoderYanger9 小时前
递归、搜索与回溯-穷举vs暴搜vs深搜vs回溯vs剪枝:12.全排列
java·算法·leetcode·机器学习·深度优先·剪枝·1024程序员节
憨憨崽&9 小时前
进击大厂:程序员必须修炼的算法“内功”与思维体系
开发语言·数据结构·算法·链表·贪心算法·线性回归·动态规划
chem411110 小时前
C 语言 函数指针和函数指针数组
c语言·数据结构·算法
liu****11 小时前
八.函数递归
c语言·开发语言·数据结构·c++·算法