给定一个实数序列,设计一个最有效的算法,找到一个总和最大的区间

这个问题是经典的最大子数组和问题,也称为 Kadane 算法。我们可以使用动态规划的方法来高效地解决它。以下是解决方案的 C++ 实现:

复制代码
class Solution {
public:
    vector<int> maxSubArray(vector<double>& nums) {
        if (nums.empty()) return {};
        
        double maxSum = nums[0], currentSum = nums[0];
        int start = 0, end = 0, tempStart = 0;
        
        for (int i = 1; i < nums.size(); i++) {
            if (currentSum + nums[i] > nums[i]) {
                currentSum += nums[i];
            } else {
                currentSum = nums[i];
                tempStart = i;
            }
            
            if (currentSum > maxSum) {
                maxSum = currentSum;
                start = tempStart;
                end = i;
            }
        }
        
        return {start, end, maxSum};
    }
};

这个算法的工作原理如下:

  1. 我们使用两个变量:maxSum 记录到目前为止找到的最大和,currentSum 记录当前子数组的和。
  2. 我们还使用三个索引:startend 记录最大和子数组的起始和结束位置,tempStart 记录当前子数组的起始位置。
  3. 我们从数组的第二个元素开始遍历:
    • 如果将当前元素加入到现有的子数组中会使和增加,我们就将其加入。
    • 否则,我们开始一个新的子数组,从当前元素开始。
  4. 每次我们更新 currentSum 后,我们都会检查它是否大于 maxSum。如果是,我们更新 maxSum 并记录新的起始和结束位置。
  5. 最后,我们返回一个包含最大和子数组的起始位置、结束位置和最大和的向量。

这个算法的时间复杂度是 O(n),其中 n 是数组的长度。它只需要遍历数组一次,因此是非常高效的。空间复杂度是 O(1),因为我们只使用了几个额外的变量,不管输入数组的大小如何。

这个算法可以处理包含正数、负数和零的实数序列。它也可以处理全负数的情况,在这种情况下,它会返回数组中最大的单个元素。

相关推荐
飞川0017 分钟前
【LeetCode 热题100】146:LRU 缓存(详细解析)(Go语言版)
算法
uhakadotcom14 分钟前
Supervised Fine-Tuning(SFT)最佳实践
算法·面试·github
2301_7944615742 分钟前
详解七大排序
数据结构·算法·排序算法
爱coding的橙子1 小时前
蓝桥杯备赛 Day16 单调数据结构
数据结构·c++·算法·蓝桥杯
wuqingshun3141592 小时前
经典算法 约数之和
数据结构·c++·算法·蓝桥杯
溟洵2 小时前
【C/C++算法】蓝桥杯之递归算法(如何编写想出递归写法)
c语言·c++·算法
XYY3692 小时前
搜索与图论 树的深度优先遍历 树的重心
算法
破东风2 小时前
leetcode每日一题:替换子串得到平衡字符串
算法·leetcode·滑动窗口
Hole_up2 小时前
蓝桥杯真题-分糖果-题解
python·算法·职场和发展·蓝桥杯
泛舟起晶浪3 小时前
特殊的质数肋骨--dfs+isp
算法·深度优先