【感知机】感知机(perceptron)模型与几何解释

感知机( perceptron )是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1 和-1二值。感知机对应输入空间(特征空间)中将实例划分为正负两类的分离超平面,是一种判别模型。感知机是神经网络与支持向量机的基础

感知机学习旨在求出将训练数据进行线性划分的分离超平面。
感知机学习思路:

1.导入基于误分类的损失函数

2.利用梯度下降法对损失函数进行极小化

3.代入参数得到感知机模型。
感知机学习算法分类:

原始形式、对偶形式。

目录

感知机模型

感知机的几何解释

数据集的线性可分性


感知机模型

定义 设输入空间(特征空间),输出空间。输入表示实例的特征向量,对应于输入空间的点,输出表示实例的类别,由输入空间到输出空间的函数称为感知机

w,b为参数。叫做权值或权值向量(weight vector),b叫作偏置(bias)

符号函数sign的功能是取某个数的符号

感知机模型的假设空间是定义在特征空间中的所有线性分类模型或线性分类器,即函数集合

感知机的几何解释

:对应特征空间中的一个超平面,这个超平面将特征空间划分为两个部分,称为分离超平面(separating hyperplane)

b:超平面的截距

w:超平面的法向量

数据集的线性可分性

给定一个数据集,其中,,如果存在一个超平面,能够正确地划分所有正负实例点,则称数据集为线性可分数据集(linearky separable data set),否则称其线性不可分.

下篇:【感知机】感知机(perceptron)学习策略

相关推荐
Larry_Yanan43 分钟前
Qt多进程(一)进程间通信概括
开发语言·c++·qt·学习
superman超哥1 小时前
仓颉语言中基本数据类型的深度剖析与工程实践
c语言·开发语言·python·算法·仓颉
Learner__Q1 小时前
每天五分钟:滑动窗口-LeetCode高频题解析_day3
python·算法·leetcode
阿昭L2 小时前
leetcode链表相交
算法·leetcode·链表
闻缺陷则喜何志丹2 小时前
【计算几何】仿射变换与齐次矩阵
c++·数学·算法·矩阵·计算几何
liuyao_xianhui2 小时前
0~n-1中缺失的数字_优选算法(二分查找)
算法
做cv的小昊2 小时前
【TJU】信息检索与分析课程笔记和练习(1)认识文献
经验分享·笔记·学习·搜索引擎·全文检索
hmbbcsm2 小时前
python做题小记(八)
开发语言·c++·算法
机器学习之心3 小时前
基于Stacking集成学习算法的数据回归预测(4种基学习器PLS、SVM、BP、RF,元学习器LSBoost)MATLAB代码
算法·回归·集成学习·stacking集成学习
图像生成小菜鸟3 小时前
Score Based diffusion model 数学推导
算法·机器学习·概率论