Open3D通过索引提取点云

目录

一、概述

二、代码实现

2.1关键函数

[2.2 完整代码](#2.2 完整代码)

三、实现效果

3.1原始点云

3.2提取后点云


一、概述

在 Open3D 中,通过索引提取点云是一种常见且有效的操作,特别适用于需要处理点云子集的场景,例如提取特定区域的点、降采样、或者进行其他的后续处理。Open3D 提供了 select_by_index 方法来根据索引提取点云的子集。这个方法可以接受一个整数索引的列表,根据列表中的索引值提取对应的点云部分。

二、代码实现

2.1关键函数

Open3D中的select_by_index()使用二进制掩码只输出选定的点或非选定的点。

  • inlier_cloud = cloud.select_by_index(m_ind)提取索引对应的点;
  • outlier_cloud = cloud.select_by_index(m_ind, invert=True)提取索引之外的点。
python 复制代码
def select_by_index(self, indices, invert=False): # real signature unknown; restored from __doc__
        """
        select_by_index(self, indices, invert=False)
        
        Function to select points from input pointcloud into output pointcloud.
        
        Args:
            indices (List[int]): Indices of points to be selected.
            invert (bool, optional, default=False): Set to ``True`` to invert the selection of indices.
        
        Returns:
            open3d.cpu.pybind.geometry.PointCloud
        """

注意事项

  • 索引范围:确保索引列表中的值在点云中存在对应的点。否则,会导致错误或空的子集。
  • 灵活性:可以根据需要生成任意数量和类型的索引,例如提取连续的点、随机选择的点或者基于特定条件的点。

2.2 完整代码

python 复制代码
import open3d as o3d
import numpy as np

# 加载点云数据
pcd = o3d.io.read_point_cloud("bunny.pcd")

# 可视化原始点云
o3d.visualization.draw_geometries([pcd], window_name='Original Point Cloud')

# 生成前1000个点的索引
num_points = 1000
indices_first_1000 = list(range(num_points))

# 使用索引提取点云子集
subset_pcd_first_1000 = pcd.select_by_index(indices_first_1000)

# 可视化提取的前1000个点
o3d.visualization.draw_geometries([subset_pcd_first_1000], window_name='First 1000 Points')

# 获取点云中的所有点数
total_points = len(pcd.points)

# 随机选择1000个点的索引
indices_random_1000 = np.random.choice(total_points, num_points, replace=False)

# 使用索引提取点云子集
subset_pcd_random_1000 = pcd.select_by_index(indices_random_1000)

# 可视化提取的随机1000个点
o3d.visualization.draw_geometries([subset_pcd_random_1000], window_name='Random 1000 Points')

三、实现效果

3.1原始点云

3.2提取后点云

前1000个点

随机提取的1000个点

相关推荐
洛生&13 小时前
Elevator Rides
算法
2501_9335130413 小时前
关于一种计数的讨论、ARC212C Solution
算法
Wu_Dylan13 小时前
智能体系列(二):规划(Planning):从 CoT、ToT 到动态采样与搜索
人工智能·算法
一招定胜负13 小时前
OpenCV轮廓检测完全指南:从原理到实战
人工智能·opencv·计算机视觉
毕设源码-郭学长13 小时前
【开题答辩全过程】以 基于python电商商城系统为例,包含答辩的问题和答案
开发语言·python
black0moonlight13 小时前
win11 isaacsim 5.1.0 和lab配置
python
散峰而望13 小时前
【算法竞赛】栈和 stack
开发语言·数据结构·c++·算法·leetcode·github·推荐算法
知乎的哥廷根数学学派13 小时前
基于多尺度注意力机制融合连续小波变换与原型网络的滚动轴承小样本故障诊断方法(Pytorch)
网络·人工智能·pytorch·python·深度学习·算法·机器学习
网安CILLE13 小时前
PHP四大输出语句
linux·开发语言·python·web安全·网络安全·系统安全·php