Java技术栈总结:数据库MySQL篇

一、慢查询

1、常见情形

聚合查询

多表查询

表数据量过大查询

深度分页查询

2、定位慢查询

方案一、开源工具

  • 调试工具:Arthas
  • 运维工具:Prometheus、Skywalking

方案二、MySQL自带慢日志

在MySQL配置文件 /etc/my.conf 中配置:

XML 复制代码
# 开启MySQL慢日志开关
slow_query_log=ON 
# 设置慢日志时间2秒,超过2秒的SQL语句会被认为是慢查询,记录慢查询日志 
long_query_time=2 
# 慢日志记录文件 
slow_query_log_file =/var/lib/mysql/localhost-slow.log

重启MySQL服务器,后续可在对应日志文件中查看慢日志信息。

3、慢SQL优化

  • 聚合查询,考虑增加临时表
  • 多表查询,优化SQL语句
  • 表数据量过大,增加索引
  • 深度分页查询,

其中,聚合查询、多表查询、数据量过大的情况,均可以使用SQL执行计划分析,进行优化。

sql 复制代码
EXPLAIN/DESC + 原SQL语句

字段含义

  • possible_key,当前SQL可能会使用到的索引;
  • key,当前SQL实际命中的索引;
  • key_len,索引"key"占用空间大小;
  • Extra,额外的优化建议;
    • Using where;Using index:使用了索引,需要的数据在索引中都能够找到,不需要回表查询。
    • Using index condition:使用了索引,但是需要回表查数据。
  • type,该SQL数据访问/操作的类型,性能从好到差依次为:NULL、system、const、eq_ref、ref、range、index、all。
    • ALL,扫描全部数据,MySQL将遍历全表以找到匹配的行;
    • index,遍历索引,索引树扫描;
    • range,索引范围查找;
    • ref,使用非唯一索引查找数据;
    • eq_ref,类似ref,区别是使用的索引为唯一索引,对于每个索引的键值,表中只有一条记录匹配。
    • const,根据主键查询;
    • system,查询mysql自带的表;

Q:某条SQL查询很慢,如何分析?

A:可以使用MySQL自带分析工具EXPLAIN。

  • 通过key和key_len检查是否命中了索引(索引本身存在是否有失效的情况)
  • 通过type字段查看sql是否有进一步的优化空间,是否存在全索引扫描或全盘扫描
  • 通过extra建议判断,是否出现了回表的情况,如果出现了,可以尝试添加索引或修改返回字段来修复

二、MySQL存储引擎

1、分类

存储引擎是存储数据、建立索引、更新/查询数据等技术的实现方式。存储引擎基于表,而非基于数据库。

# 特性 MyISAM InnoDB MEMORY
事务 × ×
锁机制 表锁 表锁、行锁 表锁
外键 × ×

在mysql中提供了很多的存储引擎,比较常见有InnoDB、MyISAM、Memory

  • InnoDB存储引擎是mysql5.5之后是默认的引擎,它支持事务、外键、表级锁和行级锁
    • DML操作遵循ACID模型,支持事务;
    • 行级锁,提高并发性能;
    • 支持外键,FOREIGN KEY 约束,保证数据的完整及正确性。
  • MyISAM是早期的引擎,不支持事务、只有表级锁、也没有外键,用的不多
  • Memory主要把数据存储在内存,支持表级锁,没有外键和事务,用的也不多

2、体系结构

三、索引

索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构(**B+**),这些数据结构以某种方式指向数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。

1、B树

2、B+树

MySQL的InnoDB引擎采用的B+树的数据结构来存储索引

  • 阶数更多,路径更短
  • 磁盘读写代价B+树更低,非叶子节点只存储指针,叶子阶段存储数据
  • B+树便于扫库和区间查询,叶子节点是一个双向链表(叶子节点内部为单向链表)。

B树与B+树对比:

①:磁盘读写代价B+树更低;②:查询效率B+树更加稳定;③:B+树便于扫库和区间查询

3、聚簇索引与非聚簇索引

聚簇索引,数据存储和索引在一块,索引结构的叶子节点保存了行数据。聚簇索引在每张表中都有且仅有一个。

非聚簇索引(二级索引),将数据与索引分开存储,叶子节点关联的内容为对应的主键。一张表可以有多个二级索引。

聚集索引选取规则:

  • 如果存在主键,主键索引就是聚集索引。
  • 如果不存在主键,将使用第一个唯一索引(UNIQUE)作为聚集索引。
  • 如果表没有主键,且没有合适的唯一索引,则InnoDB会++自动生成一个++++rowid++ 作为隐藏的聚集索引。

回表查询:通过二级索引找到对应的主键,然后根据主键值通过聚簇索引找到对应的行数据,这个查找的过程称为回表。

4、覆盖索引

覆盖索引:指查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到 。

  • 使用id查询,直接走聚集索引查询,一次索引扫描,直接返回数据,性能高。
  • 如果返回的列中没有创建索引,可能会触发回表查询,尽量避免使用select *

超大分页问题处理,

数据量较大的情况,使用 limit 分页查询,查询越靠后,查询效率越低。

优化思路:一般分页查询时,通过创建 覆盖索引 能够比较好地提高性能,可以通过 覆盖索引 + 子查询 的形式进行优化。

java 复制代码
select * from tb_sku t,
     (select id from tb_sku order by id limit 90000,10) a 
where t.id = a.id;

Q:超大分页怎么处理?

A:超大分页一般在数据量较大时,使用了limit分页查询,且需要对数据进行排序。这种情况下查询的效率就会比较低,可以采用覆盖索引和子查询解决。

首先,分页查询数据的主键id字段,然后用子查询来过滤,只需要查询这个id列表中的数据即可。因为查询id的时候走的是覆盖索引,所以效率会提升。

相关推荐
CT随7 分钟前
Redis内存碎片详解
java·开发语言
brrdg_sefg16 分钟前
gitlab代码推送
java
做梦敲代码20 分钟前
达梦数据库-读写分离集群部署
数据库·达梦数据库
奶香臭豆腐30 分钟前
C++ —— 模板类具体化
开发语言·c++·学习
hanbarger40 分钟前
mybatis框架——缓存,分页
java·spring·mybatis
cdut_suye1 小时前
Linux工具使用指南:从apt管理、gcc编译到makefile构建与gdb调试
java·linux·运维·服务器·c++·人工智能·python
苹果醋31 小时前
2020重新出发,MySql基础,MySql表数据操作
java·运维·spring boot·mysql·nginx
小蜗牛慢慢爬行1 小时前
如何在 Spring Boot 微服务中设置和管理多个数据库
java·数据库·spring boot·后端·微服务·架构·hibernate
azhou的代码园1 小时前
基于JAVA+SpringBoot+Vue的制造装备物联及生产管理ERP系统
java·spring boot·制造
hanbarger1 小时前
nosql,Redis,minio,elasticsearch
数据库·redis·nosql