猫狗识别—静态图像识别

猫狗识别---静态图像识别

1. 导入必要的库:

python 复制代码
import torch
import numpy as np
import torchvision
from os import path
from torchvision import datasets, models
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import os
import tkinter as tk
from PIL import Image, ImageTk
from tkinter import filedialog
import cv2
import subprocess
from tkinter import messagebox

2. 设置数据目录和模型路径:

  • data_dir变量设置了数据目录的路径,model_path变量设置了预训练模型的路径。
python 复制代码
#设置数据目录和模型路径
data_dir = r'data'
model_path = 'cat_dog_classifier.pth'

3. 定义图像转换

python 复制代码
data_transforms = {
    'test': transforms.Compose([
        transforms.Resize(size=224),
        transforms.CenterCrop(size=224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

4. 使用GPU

python 复制代码
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

5. 加载没有预训练权重的ResNet模型

python 复制代码
model = models.resnet50(pretrained=False)  # 使用pretrained=False
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 2)
model.load_state_dict(torch.load(model_path))
model = model.to(device)
model.eval()

6. 创建Tkinter窗口:

python 复制代码
#创建Tkinter窗口
root = tk.Tk()
root.title('图像识别猫狗')
root.geometry('800x650')

image = Image.open("图像识别背景.gif")
image = image.resize((800, 650))  # 调整背景图片大小
photo1 = ImageTk.PhotoImage(image)
canvas = tk.Label(root, image=photo1)
canvas.pack()


#添加文本标签来显示识别结果
result_label = tk.Label(root, text="", font=('Helvetica', 18))
result_label.place(x=280, y=450)

#原始图像标签
image_label = tk.Label(root, text="", image="")
image_label.place(x=210, y=55)

#保存用户选择的图片路径
selected_image_path = None

#加载测试数据集
image_datasets = {x: datasets.ImageFolder(root=os.path.join(data_dir, x),
                                          transform=data_transforms[x])
                  for x in ['test']}
dataloaders = {x: DataLoader(image_datasets[x], batch_size=1, shuffle=False)
               for x in ['test']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['test']}
class_names = image_datasets['test'].classes  # 定义class_names


#加载Haar特征级联分类器
cat_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalcatface.xml')
dog_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_alt2.xml')

7.定义选择图片的函数:

python 复制代码
#定义一个函数来打开文件选择对话框并显示图片
def choose_image():
    global selected_image_path
    file_path = filedialog.askopenfilename(initialdir=data_dir, title="选择图片",
                                           filetypes=(("图片文件", "*.png *.jpg *.jpeg *.gif *.bmp"), ("所有文件", "*.*")))
    if file_path:
        selected_image_path = file_path
        img = Image.open(file_path)
        img = img.resize((400, 350), Image.LANCZOS)
        imgTk = ImageTk.PhotoImage(img)
        image_label.config(image=imgTk)
        image_label.image = imgTk

8.定义预测图片的函数:

python 复制代码
#定义一个函数来使用模型进行预测
def predict_image():
    global selected_image_path
    if selected_image_path:
        img = Image.open(selected_image_path)
        transform = data_transforms['test']
        img_tensor = transform(img).unsqueeze(0).to(device)

        with torch.no_grad():
            outputs = model(img_tensor)
            _, preds = torch.max(outputs, 1)

        prediction = class_names[preds.item()]  # 使用str()来将整数转换为字符串
        result_label.config(text=f"检测到的结果为: {prediction}")

        # 使用OpenCV在原始图像上绘制矩形框
        img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)

        if prediction == 'cats':
            cats = cat_cascade.detectMultiScale(img_cv2, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
            for (x, y, w, h) in cats:
                cv2.rectangle(img_cv2, (x, y), (x + w, y + h), (0, 0, 255), 2)  # 红色矩形框
            if len(cats) > 0:
                cv2.imwrite("detected_cats_image.jpg", img_cv2)  # 保存带有猫矩形框的图像
                img_detected_cats = Image.open("detected_cats_image.jpg").resize((350, 300), Image.LANCZOS)
                imgTk_detected_cats = ImageTk.PhotoImage(img_detected_cats)
                image_label.config(image=imgTk_detected_cats)
                image_label.image = imgTk_detected_cats
        elif prediction == 'dogs':
            dogs = dog_cascade.detectMultiScale(img_cv2, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
            for (x, y, w, h) in dogs:
                cv2.rectangle(img_cv2, (x, y), (x + w, y + h), (0, 0, 255), 2)  # 红色矩形框
            if len(dogs) > 0:
                cv2.imwrite("detected_dogs_image.jpg", img_cv2)  # 保存带有狗矩形框的图像
                img_detected_dogs = Image.open("detected_dogs_image.jpg").resize((350, 300), Image.LANCZOS)
                imgTk_detected_dogs = ImageTk.PhotoImage(img_detected_dogs)
                image_label.config(image=imgTk_detected_dogs)
                image_label.image = imgTk_detected_dogs
        else:
            print("未检测到猫或狗。")
            # 显示修改后的图像
        img = cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB)
        img = cv2.resize(img, (400, 350))
        imgTk = ImageTk.PhotoImage(image=Image.fromarray(img))
        image_label.config(image=imgTk)
        image_label.image = imgTk
    else:
        print("请先选择一张图片。")

9.退出程序的函数:

python 复制代码
#退出程序的函数
def close():
    subprocess.Popen(["python","主页面.py"])
    root.destroy()

10.创建按钮:

python 复制代码
#创建按钮
image = Image.open("选择图片.gif")  # 加载一张图片
photo2 = ImageTk.PhotoImage(image)
bt1 = tk.Button(root, image=photo2, width=200, height=32, command=choose_image)
bt1.place(x=60, y=530)

image = Image.open("开始识别.gif")  # 加载一张图片
photo3 = ImageTk.PhotoImage(image)
bt1 = tk.Button(root, image=photo3, width=200, height=32, command=predict_image)
bt1.place(x=300, y=530)

image = Image.open("退出程序.gif")  # 加载一张图片
photo4 = ImageTk.PhotoImage(image)
bt1 = tk.Button(root, image=photo4, width=200, height=32, command=close)
bt1.place(x=535, y=530)

11.运行Tkinter事件循环:

python 复制代码
#运行Tkinter事件循环
root.mainloop()

12. 完整代码+运行结果

完整代码:

python 复制代码
import torch
import numpy as np
import torchvision
from os import path
from torchvision import datasets, models
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision.transforms as transforms
import os
import tkinter as tk
from PIL import Image, ImageTk
from tkinter import filedialog
import cv2
import subprocess
from tkinter import messagebox

# 设置数据目录和模型路径
data_dir = r'data'
model_path = 'cat_dog_classifier.pth'

# 定义图像转换
data_transforms = {
    'test': transforms.Compose([
        transforms.Resize(size=224),
        transforms.CenterCrop(size=224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ]),
}

# 使用GPU
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 加载没有预训练权重的ResNet模型
model = models.resnet50(pretrained=False)  # 使用pretrained=False
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 2)
model.load_state_dict(torch.load(model_path))
model = model.to(device)
model.eval()

# 创建Tkinter窗口
root = tk.Tk()
root.title('图像识别猫狗')
root.geometry('800x650')

image = Image.open("图像识别背景.gif")
image = image.resize((800, 650))  # 调整背景图片大小
photo1 = ImageTk.PhotoImage(image)
canvas = tk.Label(root, image=photo1)
canvas.pack()


# 添加文本标签来显示识别结果
result_label = tk.Label(root, text="", font=('Helvetica', 18))
result_label.place(x=280, y=450)

# 原始图像标签
image_label = tk.Label(root, text="", image="")
image_label.place(x=210, y=55)

# 保存用户选择的图片路径
selected_image_path = None

# 加载测试数据集
image_datasets = {x: datasets.ImageFolder(root=os.path.join(data_dir, x),
                                          transform=data_transforms[x])
                  for x in ['test']}
dataloaders = {x: DataLoader(image_datasets[x], batch_size=1, shuffle=False)
               for x in ['test']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['test']}
class_names = image_datasets['test'].classes  # 定义class_names


# 加载Haar特征级联分类器
cat_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalcatface.xml')
dog_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_alt2.xml')

# 定义一个函数来打开文件选择对话框并显示图片
def choose_image():
    global selected_image_path
    file_path = filedialog.askopenfilename(initialdir=data_dir, title="选择图片",
                                           filetypes=(("图片文件", "*.png *.jpg *.jpeg *.gif *.bmp"), ("所有文件", "*.*")))
    if file_path:
        selected_image_path = file_path
        img = Image.open(file_path)
        img = img.resize((400, 350), Image.LANCZOS)
        imgTk = ImageTk.PhotoImage(img)
        image_label.config(image=imgTk)
        image_label.image = imgTk

# 定义一个函数来使用模型进行预测
def predict_image():
    global selected_image_path
    if selected_image_path:
        img = Image.open(selected_image_path)
        transform = data_transforms['test']
        img_tensor = transform(img).unsqueeze(0).to(device)

        with torch.no_grad():
            outputs = model(img_tensor)
            _, preds = torch.max(outputs, 1)

        prediction = class_names[preds.item()]  # 使用str()来将整数转换为字符串
        result_label.config(text=f"检测到的结果为: {prediction}")

        # 使用OpenCV在原始图像上绘制矩形框
        img_cv2 = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)

        if prediction == 'cats':
            cats = cat_cascade.detectMultiScale(img_cv2, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
            for (x, y, w, h) in cats:
                cv2.rectangle(img_cv2, (x, y), (x + w, y + h), (0, 0, 255), 2)  # 红色矩形框
            if len(cats) > 0:
                cv2.imwrite("detected_cats_image.jpg", img_cv2)  # 保存带有猫矩形框的图像
                img_detected_cats = Image.open("detected_cats_image.jpg").resize((350, 300), Image.LANCZOS)
                imgTk_detected_cats = ImageTk.PhotoImage(img_detected_cats)
                image_label.config(image=imgTk_detected_cats)
                image_label.image = imgTk_detected_cats
        elif prediction == 'dogs':
            dogs = dog_cascade.detectMultiScale(img_cv2, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
            for (x, y, w, h) in dogs:
                cv2.rectangle(img_cv2, (x, y), (x + w, y + h), (0, 0, 255), 2)  # 红色矩形框
            if len(dogs) > 0:
                cv2.imwrite("detected_dogs_image.jpg", img_cv2)  # 保存带有狗矩形框的图像
                img_detected_dogs = Image.open("detected_dogs_image.jpg").resize((350, 300), Image.LANCZOS)
                imgTk_detected_dogs = ImageTk.PhotoImage(img_detected_dogs)
                image_label.config(image=imgTk_detected_dogs)
                image_label.image = imgTk_detected_dogs
        else:
            print("未检测到猫或狗。")
            # 显示修改后的图像
        img = cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB)
        img = cv2.resize(img, (400, 350))
        imgTk = ImageTk.PhotoImage(image=Image.fromarray(img))
        image_label.config(image=imgTk)
        image_label.image = imgTk
    else:
        print("请先选择一张图片。")


# 退出程序的函数
def close():
    subprocess.Popen(["python","主页面.py"])
    root.destroy()

# 创建按钮
image = Image.open("选择图片.gif")  # 加载一张图片
photo2 = ImageTk.PhotoImage(image)
bt1 = tk.Button(root, image=photo2, width=200, height=32, command=choose_image)
bt1.place(x=60, y=530)

image = Image.open("开始识别.gif")  # 加载一张图片
photo3 = ImageTk.PhotoImage(image)
bt1 = tk.Button(root, image=photo3, width=200, height=32, command=predict_image)
bt1.place(x=300, y=530)

image = Image.open("退出程序.gif")  # 加载一张图片
photo4 = ImageTk.PhotoImage(image)
bt1 = tk.Button(root, image=photo4, width=200, height=32, command=close)
bt1.place(x=535, y=530)

# 运行Tkinter事件循环
root.mainloop()

运行结果:

相关推荐
白熊18811 分钟前
【图像生成大模型】Step-Video-T2V:下一代文本到视频生成技术
人工智能·opencv·yolo·计算机视觉·大模型·音视频
立秋678914 分钟前
从零开始:使用 PyTorch 构建深度学习网络
人工智能·pytorch·深度学习
21级的乐未央26 分钟前
论文阅读(四):Agglomerative Transformer for Human-Object Interaction Detection
论文阅读·深度学习·计算机视觉·transformer
知舟不叙31 分钟前
基于OpenCV的实时文档扫描与矫正技术
人工智能·opencv·计算机视觉·透视变换·实时文档扫描与矫正
Blossom.1181 小时前
基于区块链技术的供应链溯源系统:重塑信任与透明度
服务器·网络·人工智能·目标检测·机器学习·计算机视觉·区块链
说私域1 小时前
O2O电商变现:线上线下相互导流——基于定制开发开源AI智能名片S2B2C商城小程序的研究
人工智能·小程序·开源·零售
埃菲尔铁塔_CV算法1 小时前
深度学习驱动下的目标检测技术:原理、算法与应用创新(二)
深度学习·算法·目标检测
Jamence2 小时前
多模态大语言模型arxiv论文略读(七十六)
人工智能·语言模型·自然语言处理
与火星的孩子对话2 小时前
Unity3D开发AI桌面精灵/宠物系列 【六】 人物模型 语音口型同步 LipSync 、梅尔频谱MFCC技术、支持中英文自定义编辑- 基于 C# 语言开发
人工智能·unity·c#·游戏引擎·宠物·lipsync
AndrewHZ2 小时前
【图像处理基石】OpenCV中都有哪些图像增强的工具?
图像处理·opencv·算法·计算机视觉·滤波·图像增强·颜色科学