YOLOv10(6):YOLOv10基于TensorRT的部署(基于INetworkDefinition)

1. 写在前面

我们在前面已经讲过很多关于YOLOv10的一些知识点,也简单理了一下如何训练自己的数据。

现在本篇文章主要是讲解一下如何在TensorRT中部署YOLOv10,相信经过这一步,各位小伙伴已经能够无限的接近于将YOLOv10产品化了。

另一个需要说明的是,本文中所述的TensorRT部署并不是基于ONNX中转方法的部署,而是通过基于INetworkDefinition的手动构建网络进行部署,这种方式能过使得我们对网络有一个较为清晰的了解和认识。

登录https://github.com/tecsai/YOLOv10_TensorRT获取网络构建代码。

话不多数,开始吧。

2. YOLOv10的网络组成

本次以YOLOv10m为例,通过阅读"yolov10m.yaml"文件可以看到,整个网络的组成和YOLOv8极为相似,仅在一些局部位置有改动。

从网络结构配置文件yolov10m.yaml可以看出,YOLOv10有一些基本的模块组成,包括Conv、C2f、SCDown、C2fCIB、PSA、Upsample以及v10Detection组成。

其中,

Conv就是基本的卷积模块;

C2f照搬了YOLOv8中的C2f;

SCDown由两个基本的Conv模块组成,通过控制Kernel和Stride,实现特征图的两倍下采样;

C2fCIB就是特殊形式的C2f,其将C2f中的Bottleneck模块换成了CIB模块。

Upsample就是特征图上采样;

PSA是MHSA与FFN配合实现的Transformer结构(QKV自注意力);

3. 基本的Conv模块

Conv模块就是普通的卷积模块,如下所示为训练工程中的PyTorch版本的卷积。

可以看到,参数已经设置的非常全面了,包括输入输出通道(c1, c2),卷积核尺寸(k),stride(s),padding(p),group(g),dilation(d)以及是否使用激活函数(act)。

对应,我们在基于TensorRT的版本中依葫芦画瓢就可以了,参考如下。

这里有一个建议,后期大家可以将激活函数SILU换成LeakyReLU,这也算是在边缘端提速的一个技巧了。

4. C2f与C2fCIB

C2f可以看做是C3的优化,与C3单元相比,每一个Bottleneck的输入Tensor的Channel都只有上一级的0.5倍,因此计算量明显降低。从另一方面讲,梯度流的增加,也能够明显提升收敛速度和收敛效果。如下分别是C3和C2f的网络结构。

(C3)

(C2f)

基于上述图,我们构建的基于INetworkDefinition的C2f的代码如下。

其中,第89行和93行即是对Tensor进行了拆分操作,依次来完成一种类"CSP"的结构。

之后在103行和108行进行一个类"ELAN"的操作,减少计算量,但丰富了梯度流。

在前面我们说过,C2f和C2fCIB实际上是一样的,仅将Bottleneck结构换成了CIB结构,CIB又是Bottleneck的一种演化版本。

5. PSA

PSA模块本质上是引入了QKV机制的自注意力模块,实现了CNN与Transformer的结合。

PSA全称Partial Self-Attention,即将特征图Tensor的部分进行MHSA+FFN,另一部分则执行了Cross Stage,并与MHSA+FFN的输出进行了融合(Concatenate)。

如下是Attention模块和PSA模块。

Attention

PSA

6. 代码参考

完整的代码可登录https://github.com/tecsai/YOLOv10_TensorRT 获取。

相关推荐
半tour费5 分钟前
TextCNN-NPU移植与性能优化实战
python·深度学习·分类·cnn·华为云
shayudiandian3 小时前
深度学习中的激活函数全解析:该选哪一个?
人工智能·深度学习
嵌入式-老费4 小时前
自己动手写深度学习框架(从网络训练到部署)
人工智能·深度学习
强化学习与机器人控制仿真5 小时前
字节最新开源模型 DA3(Depth Anything 3)使用教程(一)从任意视角恢复视觉空间
人工智能·深度学习·神经网络·opencv·算法·目标检测·计算机视觉
2501_941145856 小时前
深度学习与计算机视觉在工业质检与智能检测系统中的创新应用研究
人工智能·深度学习·计算机视觉
努力的光头强7 小时前
《智能体设计模式》从零基础入门到精通,看这一篇就够了!
大数据·人工智能·深度学习·microsoft·机器学习·设计模式·ai
没头脑的男大7 小时前
Unet+Transformer脑肿瘤分割检测
人工智能·深度学习·transformer
AI即插即用8 小时前
即插即用涨点系列(十四)2025 SOTA | Efficient ViM:基于“隐状态混合SSD”与“多阶段融合”的轻量级视觉 Mamba 新标杆
人工智能·pytorch·深度学习·计算机视觉·视觉检测·transformer
Juchecar8 小时前
从微观到宏观:视觉和听觉的区别
计算机视觉
minhuan9 小时前
构建AI智能体:九十五、YOLO视觉大模型入门指南:从零开始掌握目标检测
人工智能·yolo·目标检测·计算机视觉·视觉大模型