【Python机器学习】凝聚聚类

凝聚聚类指的是许多基于相同原则构建的聚类算法,这一原则是:算法首先声明每个点是自己的簇,然后合并两个最相似的簇,知道满足某种停止准则为止。scikit-learn中实现的停止准则是簇的个数,因此相似的簇被合并,直到仅剩下指定个数的簇。还有一些链接准则,规定如何度量"最相似的簇"。这种度量总是定义在两个现有的簇之间。

scikit-learn中实现了以下三种选项:

ward:默认选项。ward挑选两个簇来合并,使得所有簇中的方差增加最小。这通常会得到大小差不多的簇。

average:average链接将簇中所有点之间平均距离最小的两个簇合并。

complete:complete链接(也称为最大链接)将簇中点之间最大距离最小的两个簇合并。

ward适用于大多数数据集,在我们的例子中将使用它。如果簇中的成员个数非常不同(比如其中一个比其他所有都大得多),那么average或complete可能效果更好。

举例:

python 复制代码
import matplotlib.pyplot as plt
import mglearn.plots

mglearn.plots.plot_agglomerative_algorithm()
plt.show()

最开始,每个点自成一簇。然后在每个步骤中,相聚最近的两个簇合并。

在前四个步骤中,选出两个单点簇并将其合并成两点簇。在步骤5中,其中一个两点簇被扩展到三个点,以此类推,在步骤9中,只剩下三个簇,由于我们指定寻找3个簇,因此是算法结束。

来看一下凝聚聚类对最简单的三簇数据效果如何。由于算法的工作原理,凝聚算法不能对新数据点做出预测。因此凝聚聚类没有predict方法。为了构造模型并得到训练集上簇的成员关系,可以改用fit_predict方法:

python 复制代码
import matplotlib.pyplot as plt
import mglearn.plots
from sklearn.datasets import make_blobs,make_moons
from sklearn.cluster import AgglomerativeClustering


agg=AgglomerativeClustering(n_clusters=3)
X,y=make_blobs(random_state=1)
assignment=agg.fit_predict(X)

mglearn.discrete_scatter(X[:,0],X[:,1],assignment)
plt.xlabel('Feature 0')
plt.ylabel('Feature 1')
plt.show()

如图,算法完美的完成了聚类。虽然凝聚聚类的scikit-learn实现需要你指定希望算法寻找的簇的个数,但凝聚聚类方法为选择正确的个数提供了一些帮助。

相关推荐
猫头虎1 小时前
如何查看局域网内IP冲突问题?如何查看局域网IP环绕问题?arp -a命令如何使用?
网络·python·网络协议·tcp/ip·开源·pandas·pip
沿着路走到底1 小时前
python 基础
开发语言·python
Juchecar2 小时前
LLM模型与ML算法之间的关系
人工智能
FIN66682 小时前
昂瑞微:深耕射频“芯”赛道以硬核实力冲刺科创板大门
前端·人工智能·科技·前端框架·信息与通信·智能
benben0442 小时前
京东agent之joyagent解读
人工智能
LONGZETECH3 小时前
【龙泽科技】汽车动力与驱动系统综合分析技术1+X仿真教学软件(1.1.3 -初级)
人工智能·科技·汽车·汽车仿真教学软件·汽车教学软件
烛阴3 小时前
武装你的Python“工具箱”:盘点10个你必须熟练掌握的核心方法
前端·python
lisw053 小时前
SolidWorks:现代工程设计与数字制造的核心平台
人工智能·机器学习·青少年编程·软件工程·制造
大刘讲IT3 小时前
AI 生产工艺参数优化:中小型制造企业用 “智能调参“ 提升产品合格率与生产效率
人工智能·制造
图欧学习资源库3 小时前
人工智能领域、图欧科技、IMYAI智能助手2025年9月更新月报
人工智能·科技