【Python机器学习】凝聚聚类

凝聚聚类指的是许多基于相同原则构建的聚类算法,这一原则是:算法首先声明每个点是自己的簇,然后合并两个最相似的簇,知道满足某种停止准则为止。scikit-learn中实现的停止准则是簇的个数,因此相似的簇被合并,直到仅剩下指定个数的簇。还有一些链接准则,规定如何度量"最相似的簇"。这种度量总是定义在两个现有的簇之间。

scikit-learn中实现了以下三种选项:

ward:默认选项。ward挑选两个簇来合并,使得所有簇中的方差增加最小。这通常会得到大小差不多的簇。

average:average链接将簇中所有点之间平均距离最小的两个簇合并。

complete:complete链接(也称为最大链接)将簇中点之间最大距离最小的两个簇合并。

ward适用于大多数数据集,在我们的例子中将使用它。如果簇中的成员个数非常不同(比如其中一个比其他所有都大得多),那么average或complete可能效果更好。

举例:

python 复制代码
import matplotlib.pyplot as plt
import mglearn.plots

mglearn.plots.plot_agglomerative_algorithm()
plt.show()

最开始,每个点自成一簇。然后在每个步骤中,相聚最近的两个簇合并。

在前四个步骤中,选出两个单点簇并将其合并成两点簇。在步骤5中,其中一个两点簇被扩展到三个点,以此类推,在步骤9中,只剩下三个簇,由于我们指定寻找3个簇,因此是算法结束。

来看一下凝聚聚类对最简单的三簇数据效果如何。由于算法的工作原理,凝聚算法不能对新数据点做出预测。因此凝聚聚类没有predict方法。为了构造模型并得到训练集上簇的成员关系,可以改用fit_predict方法:

python 复制代码
import matplotlib.pyplot as plt
import mglearn.plots
from sklearn.datasets import make_blobs,make_moons
from sklearn.cluster import AgglomerativeClustering


agg=AgglomerativeClustering(n_clusters=3)
X,y=make_blobs(random_state=1)
assignment=agg.fit_predict(X)

mglearn.discrete_scatter(X[:,0],X[:,1],assignment)
plt.xlabel('Feature 0')
plt.ylabel('Feature 1')
plt.show()

如图,算法完美的完成了聚类。虽然凝聚聚类的scikit-learn实现需要你指定希望算法寻找的簇的个数,但凝聚聚类方法为选择正确的个数提供了一些帮助。

相关推荐
Java 码农13 分钟前
RabbitMQ集群部署方案及配置指南03
java·python·rabbitmq
Learn Beyond Limits14 分钟前
解构语义:从词向量到神经分类|Decoding Semantics: Word Vectors and Neural Classification
人工智能·算法·机器学习·ai·分类·数据挖掘·nlp
崔庆才丨静觅25 分钟前
0代码生成4K高清图!ACE Data Platform × SeeDream 专属方案:小白/商家闭眼冲
人工智能·api
qq_356448371 小时前
机器学习基本概念与梯度下降
人工智能
张登杰踩2 小时前
VIA标注格式转Labelme标注格式
python
水如烟2 小时前
孤能子视角:关系性学习,“喂饭“的小孩认知
人工智能
气概2 小时前
法奥机器人学习使用
学习·junit·机器人
徐_长卿2 小时前
2025保姆级微信AI群聊机器人教程:教你如何本地打造私人和群聊机器人
人工智能·机器人
XyX——2 小时前
【福利教程】一键解锁 ChatGPT / Gemini / Spotify 教育权益!TG 机器人全自动验证攻略
人工智能·chatgpt·机器人
Qhumaing2 小时前
C++学习:【PTA】数据结构 7-1 实验7-1(最小生成树-Prim算法)
c++·学习·算法