【Python机器学习】凝聚聚类

凝聚聚类指的是许多基于相同原则构建的聚类算法,这一原则是:算法首先声明每个点是自己的簇,然后合并两个最相似的簇,知道满足某种停止准则为止。scikit-learn中实现的停止准则是簇的个数,因此相似的簇被合并,直到仅剩下指定个数的簇。还有一些链接准则,规定如何度量"最相似的簇"。这种度量总是定义在两个现有的簇之间。

scikit-learn中实现了以下三种选项:

ward:默认选项。ward挑选两个簇来合并,使得所有簇中的方差增加最小。这通常会得到大小差不多的簇。

average:average链接将簇中所有点之间平均距离最小的两个簇合并。

complete:complete链接(也称为最大链接)将簇中点之间最大距离最小的两个簇合并。

ward适用于大多数数据集,在我们的例子中将使用它。如果簇中的成员个数非常不同(比如其中一个比其他所有都大得多),那么average或complete可能效果更好。

举例:

python 复制代码
import matplotlib.pyplot as plt
import mglearn.plots

mglearn.plots.plot_agglomerative_algorithm()
plt.show()

最开始,每个点自成一簇。然后在每个步骤中,相聚最近的两个簇合并。

在前四个步骤中,选出两个单点簇并将其合并成两点簇。在步骤5中,其中一个两点簇被扩展到三个点,以此类推,在步骤9中,只剩下三个簇,由于我们指定寻找3个簇,因此是算法结束。

来看一下凝聚聚类对最简单的三簇数据效果如何。由于算法的工作原理,凝聚算法不能对新数据点做出预测。因此凝聚聚类没有predict方法。为了构造模型并得到训练集上簇的成员关系,可以改用fit_predict方法:

python 复制代码
import matplotlib.pyplot as plt
import mglearn.plots
from sklearn.datasets import make_blobs,make_moons
from sklearn.cluster import AgglomerativeClustering


agg=AgglomerativeClustering(n_clusters=3)
X,y=make_blobs(random_state=1)
assignment=agg.fit_predict(X)

mglearn.discrete_scatter(X[:,0],X[:,1],assignment)
plt.xlabel('Feature 0')
plt.ylabel('Feature 1')
plt.show()

如图,算法完美的完成了聚类。虽然凝聚聚类的scikit-learn实现需要你指定希望算法寻找的簇的个数,但凝聚聚类方法为选择正确的个数提供了一些帮助。

相关推荐
Java后端的Ai之路8 小时前
【Python 教程15】-Python和Web
python
那个村的李富贵8 小时前
光影魔术师:CANN加速实时图像风格迁移,让每张照片秒变大师画作
人工智能·aigc·cann
冬奇Lab10 小时前
一天一个开源项目(第15篇):MapToPoster - 用代码将城市地图转换为精美的海报设计
python·开源
腾讯云开发者10 小时前
“痛点”到“通点”!一份让 AI 真正落地产生真金白银的实战指南
人工智能
CareyWYR10 小时前
每周AI论文速递(260202-260206)
人工智能
hopsky11 小时前
大模型生成PPT的技术原理
人工智能
禁默11 小时前
打通 AI 与信号处理的“任督二脉”:Ascend SIP Boost 加速库深度实战
人工智能·信号处理·cann
心疼你的一切12 小时前
昇腾CANN实战落地:从智慧城市到AIGC,解锁五大行业AI应用的算力密码
数据仓库·人工智能·深度学习·aigc·智慧城市·cann
阿蒙Amon12 小时前
TypeScript学习-第10章:模块与命名空间
学习·ubuntu·typescript
AI绘画哇哒哒12 小时前
【干货收藏】深度解析AI Agent框架:设计原理+主流选型+项目实操,一站式学习指南
人工智能·学习·ai·程序员·大模型·产品经理·转行