【Python机器学习】凝聚聚类

凝聚聚类指的是许多基于相同原则构建的聚类算法,这一原则是:算法首先声明每个点是自己的簇,然后合并两个最相似的簇,知道满足某种停止准则为止。scikit-learn中实现的停止准则是簇的个数,因此相似的簇被合并,直到仅剩下指定个数的簇。还有一些链接准则,规定如何度量"最相似的簇"。这种度量总是定义在两个现有的簇之间。

scikit-learn中实现了以下三种选项:

ward:默认选项。ward挑选两个簇来合并,使得所有簇中的方差增加最小。这通常会得到大小差不多的簇。

average:average链接将簇中所有点之间平均距离最小的两个簇合并。

complete:complete链接(也称为最大链接)将簇中点之间最大距离最小的两个簇合并。

ward适用于大多数数据集,在我们的例子中将使用它。如果簇中的成员个数非常不同(比如其中一个比其他所有都大得多),那么average或complete可能效果更好。

举例:

python 复制代码
import matplotlib.pyplot as plt
import mglearn.plots

mglearn.plots.plot_agglomerative_algorithm()
plt.show()

最开始,每个点自成一簇。然后在每个步骤中,相聚最近的两个簇合并。

在前四个步骤中,选出两个单点簇并将其合并成两点簇。在步骤5中,其中一个两点簇被扩展到三个点,以此类推,在步骤9中,只剩下三个簇,由于我们指定寻找3个簇,因此是算法结束。

来看一下凝聚聚类对最简单的三簇数据效果如何。由于算法的工作原理,凝聚算法不能对新数据点做出预测。因此凝聚聚类没有predict方法。为了构造模型并得到训练集上簇的成员关系,可以改用fit_predict方法:

python 复制代码
import matplotlib.pyplot as plt
import mglearn.plots
from sklearn.datasets import make_blobs,make_moons
from sklearn.cluster import AgglomerativeClustering


agg=AgglomerativeClustering(n_clusters=3)
X,y=make_blobs(random_state=1)
assignment=agg.fit_predict(X)

mglearn.discrete_scatter(X[:,0],X[:,1],assignment)
plt.xlabel('Feature 0')
plt.ylabel('Feature 1')
plt.show()

如图,算法完美的完成了聚类。虽然凝聚聚类的scikit-learn实现需要你指定希望算法寻找的簇的个数,但凝聚聚类方法为选择正确的个数提供了一些帮助。

相关推荐
晨非辰5 小时前
C++ 波澜壮阔 40 年:从基础I/O到函数重载与引用的完整构建
运维·c++·人工智能·后端·python·深度学习·c++40周年
有梦想的西瓜5 小时前
如何优化电力系统潮流分布:最优潮流(OPF)问题
python·电力·opf
鼎道开发者联盟5 小时前
智能原生操作系统畅想:人智共生新时代的基石
人工智能·机器学习·自然语言处理
这张生成的图像能检测吗8 小时前
(论文速读)EfficientTrain++: 高效视觉骨干训练的通用课程学习
人工智能·深度学习·计算机视觉·训练方法
Tonya438 小时前
测开学习DAY37
学习
晚霞的不甘9 小时前
CANN:华为全栈AI计算框架的深度解析(终极扩展版 · 完整篇)
人工智能·华为
DanCheng-studio10 小时前
网安毕业设计简单的方向答疑
python·毕业设计·毕设
轻抚酸~11 小时前
KNN(K近邻算法)-python实现
python·算法·近邻算法