机器学习/pytorch笔记:time2vec

1 概念部分

对于给定的标量时间概念 t,Time2Vec 的表示 t2v(t)是一个大小为 k+1的向量,定义如下:

  • 其中,t2v(t)[i]是 t2v(t)的第 i 个元素,F是一个周期性激活函数,ω和 ϕ是可学习的参数。

  • 以下是个人理解:

    • t是时间序列中的一个时间点,而不是时间序列的数值。
    • 具体来说,t 代表时间序列中的一个特定时刻,例如某一天、某一小时或某一秒等。Time2Vec 的目标是将每一个时间点 t 转换为一个具有特定特征的向量表示,以便更好地捕捉时间相关的特性和模式。

2 pytorch实现

2.1 函数t2v

python 复制代码
def t2v(tau, f, out_features, w, b, w0, b0, arg=None):
    if arg:
        v1 = f(torch.matmul(tau, w) + b, arg)
    else:
        v1 = f(torch.matmul(tau, w) + b)
    v2 = torch.matmul(tau, w0) + b0
    return torch.cat([v1, v2], 1)
  • t2v 负责将输入的时间 tau 通过两个不同的线性变换和激活函数转换成特征向量,并将这两个特征向量连接起来
    • tau 是输入的时间张量。
    • f 是激活函数(例如 torch.sin 或 torch.cos)。
    • out_features 是输出特征的维度。
    • w 和 b 是用于第一个变换的权重和偏置。
    • w0 和 b0 是用于第二个变换的权重和偏置。

2.2 SineActivation

python 复制代码
class SineActivation(nn.Module):
    def __init__(self, in_features, out_features):
        super(SineActivation, self).__init__()
        self.out_features = out_features
        self.w0 = nn.parameter.Parameter(torch.randn(in_features, 1))
        self.b0 = nn.parameter.Parameter(torch.randn(in_features, 1))
        self.w = nn.parameter.Parameter(torch.randn(in_features, out_features - 1))
        self.b = nn.parameter.Parameter(torch.randn(in_features, out_features - 1))
        self.f = torch.sin

    def forward(self, tau):
        return t2v(tau, self.f, self.out_features, self.w, self.b, self.w0, self.b0)
  • 实现了使用正弦函数作为激活函数的时间嵌入
  • cos同理,把torch.sin换成torch.cos即可
  • 输入特征的维度(in_features)取决于提供的时间特征的数量
    • 如果你只有一个时间特征(例如,仅一天中的时间),那么输入特征的维度是 1。
    • 如果你有两个时间特征(例如,一天中的时间和一周中的某一天),那么输入特征的维度是 2。
    • 依此类推,输入特征的维度是你提供的时间特征的数量。
相关推荐
少林码僧21 分钟前
2.30 传统行业预测神器:为什么GBDT系列算法在企业中最受欢迎
开发语言·人工智能·算法·机器学习·ai·数据分析
爱宁~23 分钟前
UnityShader学习笔记[二百九十九]UGUI中的Mask遮罩半透明Shader
笔记·学习
zm-v-159304339861 小时前
最新AI-Python自然科学领域机器学习与深度学习技术
人工智能·python·机器学习
郝学胜-神的一滴1 小时前
何友院士《人工智能发展前沿》全景解读:从理论基石到产业变革
人工智能·python·深度学习·算法·机器学习
BHXDML1 小时前
第五章:支持向量机
算法·机器学习·支持向量机
数据与后端架构提升之路2 小时前
实战:手搓一个“BEV 级”自动驾驶训练加速平台 —— 当 RTX 4090 遇上多模态数据
人工智能·机器学习·自动驾驶
HyperAI超神经2 小时前
【vLLM 学习】Rlhf Utils
人工智能·深度学习·学习·机器学习·ai编程·vllm
June bug3 小时前
【实习笔记】客户端基础技术
笔记·macos·cocoa
laplace01233 小时前
第八章 agent记忆与检索 下
数据库·人工智能·笔记·agent·rag
狐573 小时前
2026-01-19-牛客每日一题-阅读理解
笔记·算法·牛客