(数据科学学习手札162)Python GIS神器geopandas 1.0版本发布

本文完整代码及附件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes

1 简介

大家好我是费老师,就在昨天,Python生态中著名的GIS分析库geopandas发布了其1.0.0正式版本。

历经10年迭代升级,geopandas充分完善了其在GIS数据分析上的功能,使得我们可以使用类似pandas的操作方式,便捷且高性能的开展各种常用的GIS分析运算,极大增强了PythonGIS分析领域的能力。

今天的文章,费老师我就将带大家一起快速了解在全新的1.0版本中,新的功能特性、优化提升以及相关API的变动情况🚀~

2 geopandas 1.0版本介绍

如果你还未曾安装使用过geopandas,我最推荐的方式是新建虚拟环境,并在虚拟环境中通过conda-forge源进行稳定安装,以当下非常流行的开源环境管理工具mamba(可参考我所写的教程)为例,在终端执行下列命令(目前推荐Python版本为3.9),静静等待,即可一步到位完成最新版geopandas的安装:

bash 复制代码
mamba create -n geopandas-env python=3.9 -y && mamba activate geopandas-env && mamba install geopandas -y

而如果你已经安装了先前版本的geopandas,那么在你的对应环境下,终端执行下列命令即可进行版本升级:

bash 复制代码
mamba update geopandas -y

新安装或升级完成后,检查一下版本变化,成功升级到1.0.0版本🥳:

2.1 新增API介绍

首先我们来了解一下新版本geopandas中新增的部分主要的API:

2.1.1 新增count_geometries()方法

新增方法count_geometries(),用于针对多部件要素计算单体要素数量:

2.1.2 新增count_interior_rings()方法

新增方法count_interior_rings(),用于针对多边形要素计算内环数量:

2.1.3 新增relate_pattern()方法

新增方法relate_pattern(),用于计算要素之间是否满足特定的DE-9IM (一种分别计算成对要素在内部、边界、外部两两之间相交相离状态的复杂空间模型)空间关系,具体的原理细节较多,我会在之后单独撰文介绍,下面仅演示relate_pattern()的使用示例:

2.1.4 新增intersection_all()方法

新增方法intersection_all(),用于计算矢量列中全体要素的公共相交部分:

2.1.5 新增line_merge()方法

新增方法line_merge(),用于快速合并一系列端点相交的线要素:

2.1.6 新增set_precision()、get_precision()方法

新增方法set_precision()get_precision(),用于设置及获取矢量列的坐标精度大小:

2.1.7 新增count_coordinates()方法

新增方法count_coordinates(),用于快速计算矢量列各要素坐标点数量:

2.1.8 新增is_ccw属性方法

新增属性方法is_ccw,用于针对坐标点数量大于等于4个的线要素,判断其坐标串方向是否符合逆时针方向:

2.1.9 新增is_closed属性方法

新增属性方法is_closed,用于判断线要素是否起点终点相同:

2.1.10 新增force_2d()、force_3d()方法

新增方法force_2d()force_3d(),用于将矢量列强制去除z轴坐标、强制添加z轴坐标:

2.1.11 新增voronoi_polygons()方法

新增方法voronoi_polygons(),用于基于整体矢量列的所有顶点,快速生成泰森多边形:

2.1.12 新增contains_properly()方法

新增方法contains_properly(),用于快捷判断矢量A是否严格包含矢量B,与contains()方法的区别是,contains_properly()不允许作比较的矢量间有任何公共点:

2.1.13 新增build_area()方法

新增方法build_area(),用于基于一系列可以构成闭合面要素的线要素,整体生成合法的若干多边形:

2.1.14 新增snap()方法

新增方法snap(),用于将满足距离阈值要求的要素A挂靠到对应的要素B之上:

2.1.15 新增transform()方法

新增方法transform(),用于基于自定义坐标偏移函数,实现对矢量要素的坐标转换,其中自定义函数的输入为N行2列后N行3列的numpy数组,输出形状与输入一致即可,我们可以配合numpy中的apply_along_axis()实现自由的坐标点级别转换计算,而无需关心输入的要素是点线面中的哪种:

2.1.16 新增get_geometry()方法

新增方法get_geometry(),用于将矢量列各要素视作多部件要素,进行快捷位序索引:

2.1.17 新增dwithin()方法

新增方法dwithin(),用于快速判断矢量A是否在矢量B目标的指定距离内:

2.1.18 新增to_geo_dict()方法

新增方法to_geo_dict(),用于将GeoDataFrame快捷转化为GeoJSON格式字典数据结构:

2.2 功能增强

接下来我们来了解新版本中获得功能增强的一些主要API:

2.2.1 空间连接新增dwithin型空间关系判断

针对sjoin()方法,新增了dwithin型空间关系判断,使得我们可以在geopandas中真正意义上直接实现"匹配与目标要素距离在XXX以内的纪录行":

2.2.2 配合pd.read_csv指定矢量列类型

在新版本中,我们可以将GeoDataFrame写出为csv格式,并在使用pd.read_csv()读取时,通过dtype参数将对应列指定解析为矢量类型:

2.2.3 to_json()新增参数show_bbox、drop_id、to_wgs84

针对GeoDataFrame.to_json(),新增参数show_bboxdrop_idto_wgs84,实现更为定制化的GeoJSON转化:

python 复制代码
demo_gdf = gpd.GeoDataFrame(
    {
        'name': ['示例要素'],
        'geometry': [Point(106, 29)]
    },
    crs='EPSG:4524'
)
print(demo_gdf.to_json(
    ensure_ascii=False,
    indent=4,
    show_bbox=True,
    drop_id=True,
    to_wgs84=False
))

2.2.4 空间连接新增参数on_attribute

针对GeoDataFrame.sjoin(),新增参数on_attribute,用于额外施加常规表连接中的指定字段相等条件,相当于设置有效的on_attribute参数后,空间连接的结果将既满足空间关系,又满足字段匹配关系:

2.3 标记为废弃的API

新版本中也新增了一系列标记为废弃的API,将会在未来某个版本正式移除,请注意及时调整你的相关代码逻辑,其中主要的有:

  • unary_union将废弃,更换为union_all()
  • use_pygeos将废弃并在1.1版本中正式移除

由于pygeos已经合并入geopandas底层矢量计算所依赖的新版shapely中,因此对应的use_pygeos设置项也将退出历史舞台:

  • crs属性赋值以修改坐标系的方式将在未来版本被禁用,请统一使用set_crs()代替

篇幅有限,未能详尽介绍全部新版本内容,完整的更新日志请移步:https://github.com/geopandas/geopandas/releases/tag/v1.0.0


以上就是本文的全部内容,欢迎在评论区与我们进行讨论~

相关推荐
草明14 分钟前
Mongodb 慢查询日志分析 - 1
数据库·python·mongodb
yyytucj16 分钟前
python--列表list切分(超详细)
linux·开发语言·python
大数据魔法师30 分钟前
1905电影网中国地区电影数据分析(一) - 数据采集、清洗与存储
爬虫·python
五味香2 小时前
Java学习,List 元素替换
android·java·开发语言·python·学习·golang·kotlin
计算机徐师兄2 小时前
Python基于Django的花卉商城系统的设计与实现(附源码,文档说明)
python·django·python django·花卉商城系统·花卉·花卉商城·python花卉商城系统
机械心2 小时前
pytorch深度学习模型推理和部署、pytorch&ONNX&tensorRT模型转换以及python和C++版本部署
pytorch·python·深度学习
ALISHENGYA2 小时前
精讲Python之turtle库(二):设置画笔颜色、回旋伞、变色回旋伞、黄色三角形、五角星,附源代码
python·turtle
drebander3 小时前
PyTorch 模型 浅读
pytorch·python·大模型
securitor3 小时前
【java】IP来源提取国家地址
java·前端·python
加德霍克4 小时前
【机器学习】使用scikit-learn中的KNN包实现对鸢尾花数据集或者自定义数据集的的预测
人工智能·python·学习·机器学习·作业