STM32通过SPI硬件读写W25Q64

文章目录

[1. W25Q64](#1. W25Q64)

[2. 硬件电路](#2. 硬件电路)

[3. 软件/硬件波形对比](#3. 软件/硬件波形对比)

[4. STM32中的SPI外设](#4. STM32中的SPI外设)

[5. 代码实现](#5. 代码实现)

[5.1 MyI2C.c](#5.1 MyI2C.c)

[5.2 MyI2C.h](#5.2 MyI2C.h)

[5.3 W25Q64.c](#5.3 W25Q64.c)

[5.4 W25Q64.h](#5.4 W25Q64.h)

[5.5 W25Q64_Ins.h](#5.5 W25Q64_Ins.h)

[5.6 main.c](#5.6 main.c)


1. W25Q64

对于SPI通信和W25Q64的详细解析可以看下面这篇文章

STM32单片机SPI通信详解-CSDN博客

对于STM32通过SPI软件读写W25Q64的代码,可以看下面这篇文章

STM32通过SPI软件读写W25Q64-CSDN博客

W25Qxx系列是一种低成本、小型化、使用简单的非易失性存储器,常应用于数据存储、字库存储、固件程序存储等场景

存储介质:Nor Flash(闪存)

时钟频率:80MHz / 160MHz (Dual SPI) / 320MHz (Quad SPI)

存储容量(24位地址):

W25Q40: 4Mbit / 512KByte

W25Q80: 8Mbit / 1MByte

W25Q16: 16Mbit / 2MByte

W25Q32: 32Mbit / 4MByte

W25Q64: 64Mbit / 8MByte

W25Q128: 128Mbit / 16MByte

W25Q256: 256Mbit / 32MByte

地址设计

  • 地址位数:指用于寻址的二进制位数。在计算机系统中,每个内存单元都有一个唯一的地址,通过地址可以访问和引用内存中的数据或指令。
  • 地址总线:用于地址传输的总线。W25Q64 的 24 位地址总线意味着它可以访问 2^24 个地址,即 16,777,216 个字节(16MB)的空间。
  • 地址位数与存储容量:地址位数越多,能寻址的存储空间越大。例如,8 位地址可以寻址 256 个字节,16 位地址可以寻址 65,536 个字节(64KB)。

W25Q64 的存储空间

  • 存储容量:W25Q64 具体的存储容量为 64Mbit,即 8MB,但其地址总线的设计可以支持更大的寻址空间。
  • 数据组织:存储器通常按字节组织,每个字节有唯一的地址。W25Q64 可以通过 24 位地址总线访问每个字节,这使得数据读写操作更加灵活和高效。

2. 硬件电路

|----------|---------------|
| 引脚 | 功能 |
| VCC、GND | 电源(2.7~3.6V) |
| CS(SS) | SPI片选 |
| CLK(SCK) | SPI时钟 |
| DI(MOSI) | SPI主机输出从机输入 |
| DO(MISO) | SPI主机输入从机输出 |
| WP | 写保护 |
| HOLD | 数据保持 |

WP(Write Protect):写保护

WP 引脚用于实现硬件写保护功能。WP 引脚为低电平时,写保护有效,无法进行写操作;WP 引脚为高电平时,可以进行写操作。

HOLD:数据保持

HOLD 引脚为低电平时,芯片进入保持状态。当在进行正常的读写操作时,如果需要中断 SPI 通信以操作其他设备,可以将 HOLD 引脚置为低电平。此时,芯片会保持当前状态但释放总线控制权。这样可以在不中断当前操作的前提下,使用 SPI 总线与其他设备通信。操作完毕后,将 HOLD 引脚置为高电平,芯片将恢复并继续之前的操作。这个功能允许在不终止总线操作的情况下,实现 SPI 总线的中断处理。

3. 软件/硬件波形对比

硬件数据波形变化紧贴SCK边沿 软件数据变化在边沿后有些延迟。

I2C:SCL低电平期间数据变化,高电平期间数据采样 SPI:SCK下降沿数据移出,上升沿数据移入。 两者最终波形的表现形式都是一样的,无论是下降沿变化还是低电平期间变化,它们都 是一个意思,都可以作为数据变化的时刻。

4. STM32中的SPI外设

STM32内部集成了硬件SPI收发电路,可以由硬件自动执行时钟生成、数据收发等功能,减轻CPU的负担,可配置8位/16位数据帧、高位先行/低位先行

时钟频率: fPCLK / (2, 4, 8, 16, 32, 64, 128, 256)

支持多主机模型、主或从操作

可精简为半双工/单工通信

支持DMA

兼容I2S协议

STM32F103C8T6 硬件SPI资源:SPI1、SPI2

5. 代码实现

硬件SPI读写W25Q64

硬件SPI配置步骤

在软件读写I2C的基础上进行改写,以适应硬件读写SPI的需求。以下是详细步骤:

  1. 保留SS引脚的GPIO软件模拟:使用GPIO软件模拟保留SS(Slave Select)引脚的功能。
  2. 初始化SPI外设:配置SPI外设的相关参数。
  3. 交换一个字节的操作流程:具体操作流程如下:
    • 开启SPI和GPIO时钟:确保SPI外设和GPIO端口的时钟已开启。
    • 初始化GPIO端口
      • SCK和MOSI:这些是由硬件外设控制的输出信号,需要配置为复用推挽输出模式。
      • MISO:这是硬件外设的输入信号,需要配置为上拉输入模式。由于输入设备可以有多个,因此不存在复用输入的情况。普通GPIO口和外设都可以进行输入操作。
      • SS引脚:这是由软件控制的输出信号,需要配置为通用推挽输出模式。
    • 配置SPI外设:使用结构体对SPI外设进行配置,设定相应的参数。
    • 开关控制 :使用SPI_Cmd函数来开启或关闭SPI外设。

5.1 MyI2C.c

复制代码
#include "stm32f10x.h"                  // Device header

/**
  * 函    数:SPI写SS引脚电平,SS仍由软件模拟
  * 参    数:BitValue 协议层传入的当前需要写入SS的电平,范围0~1
  * 注意事项:此函数需要用户实现内容,当BitValue为0时,需要置SS为低电平,当BitValue为1时,需要置SS为高电平
  */
void MySPI_W_SS(uint8_t BitValue)
{
	GPIO_WriteBit(GPIOA, GPIO_Pin_4, (BitAction)BitValue);		//根据BitValue,设置SS引脚的电平
}

//SPI初始化
void MySPI_Init(void)
{
	/*开启时钟*/
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);	//开启GPIOA的时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);	//开启SPI1的时钟
	
	/*GPIO初始化*/
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA4引脚初始化为推挽输出
	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_7;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA5和PA7引脚初始化为复用推挽输出
	
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);					//将PA6引脚初始化为上拉输入
	
	/*SPI初始化*/
	SPI_InitTypeDef SPI_InitStructure;						//定义结构体变量
	SPI_InitStructure.SPI_Mode = SPI_Mode_Master;			//模式,选择为SPI主模式
	SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;	//方向,选择2线全双工
	SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;		//数据宽度,选择为8位
	SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;		//先行位,选择高位先行
	SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_128;	//波特率分频,选择128分频
	SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;				//SPI极性,选择低极性
	SPI_InitStructure.SPI_CPHA = SPI_CPHA_1Edge;			//SPI相位,选择第一个时钟边沿采样,极性和相位决定选择SPI模式0
	SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;				//NSS,选择由软件控制
	SPI_InitStructure.SPI_CRCPolynomial = 7;				//CRC多项式,暂时用不到,给默认值7
	SPI_Init(SPI1, &SPI_InitStructure);						//将结构体变量交给SPI_Init,配置SPI1
	
	/*SPI使能*/
	SPI_Cmd(SPI1, ENABLE);									//使能SPI1,开始运行
	
	/*设置默认电平*/
	MySPI_W_SS(1);											//SS默认高电平
}

//SPI起始
void MySPI_Start(void)
{
	MySPI_W_SS(0);				//拉低SS,开始时序
}

//SPI终止
void MySPI_Stop(void)
{
	MySPI_W_SS(1);				//拉高SS,终止时序
}

/**
  * 函    数:SPI交换传输一个字节,使用SPI模式0
  * 参    数:ByteSend 要发送的一个字节
  * 返 回 值:接收的一个字节
  */
uint8_t MySPI_SwapByte(uint8_t ByteSend)
{
	while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) != SET);	//等待发送数据寄存器空
	
	SPI_I2S_SendData(SPI1, ByteSend);								//写入数据到发送数据寄存器,开始产生时序
	
	while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) != SET);	//等待接收数据寄存器非空
	
	return SPI_I2S_ReceiveData(SPI1);								//读取接收到的数据并返回
}

5.2 MyI2C.h

复制代码
#ifndef __MYSPI_H
#define __MYSPI_H

void MySPI_Init(void);
void MySPI_Start(void);
void MySPI_Stop(void);
uint8_t MySPI_SwapByte(uint8_t ByteSend);

#endif

5.3 W25Q64.c

复制代码
#include "stm32f10x.h"                  // Device header
#include "MySPI.h"
#include "W25Q64_Ins.h"

//W25Q64初始化
void W25Q64_Init(void)
{
	MySPI_Init();					//先初始化底层的SPI
}

/**
  * 函    数:MPU6050读取ID号
  * 参    数:MID 工厂ID,使用输出参数的形式返回
  * 参    数:DID 设备ID,使用输出参数的形式返回
  */
void W25Q64_ReadID(uint8_t *MID, uint16_t *DID)
{
	MySPI_Start();								//SPI起始
	MySPI_SwapByte(W25Q64_JEDEC_ID);			//交换发送读取ID的指令
	*MID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//交换接收MID,通过输出参数返回
	*DID = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//交换接收DID高8位
	*DID <<= 8;									//高8位移到高位
	*DID |= MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//或上交换接收DID的低8位,通过输出参数返回
	MySPI_Stop();								//SPI终止
}

//W25Q64写使能
void W25Q64_WriteEnable(void)
{
	MySPI_Start();								//SPI起始
	MySPI_SwapByte(W25Q64_WRITE_ENABLE);		//交换发送写使能的指令
	MySPI_Stop();								//SPI终止
}

//W25Q64等待忙
void W25Q64_WaitBusy(void)
{
	uint32_t Timeout;
	MySPI_Start();								//SPI起始
	MySPI_SwapByte(W25Q64_READ_STATUS_REGISTER_1);				//交换发送读状态寄存器1的指令
	Timeout = 100000;							//给定超时计数时间
	while ((MySPI_SwapByte(W25Q64_DUMMY_BYTE) & 0x01) == 0x01)	//循环等待忙标志位
	{
		Timeout --;								//等待时,计数值自减
		if (Timeout == 0)						//自减到0后,等待超时
		{
			/*超时的错误处理代码,可以添加到此处*/
			break;								//跳出等待,不等了
		}
	}
	MySPI_Stop();								//SPI终止
}

/**
  * 函    数:W25Q64页编程
  * 参    数:Address 页编程的起始地址,范围:0x000000~0x7FFFFF
  * 参    数:DataArray	用于写入数据的数组
  * 参    数:Count 要写入数据的数量,范围:0~256
  * 注意事项:写入的地址范围不能跨页
  */
void W25Q64_PageProgram(uint32_t Address, uint8_t *DataArray, uint16_t Count)
{
	uint16_t i;
	
	W25Q64_WriteEnable();						//写使能
	
	MySPI_Start();								//SPI起始
	MySPI_SwapByte(W25Q64_PAGE_PROGRAM);		//交换发送页编程的指令
	MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位
	MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位
	MySPI_SwapByte(Address);					//交换发送地址7~0位
	for (i = 0; i < Count; i ++)				//循环Count次
	{
		MySPI_SwapByte(DataArray[i]);			//依次在起始地址后写入数据
	}
	MySPI_Stop();								//SPI终止
	
	W25Q64_WaitBusy();							//等待忙
}

/**
  * 函    数:W25Q64扇区擦除(4KB)
  * 参    数:Address 指定扇区的地址,范围:0x000000~0x7FFFFF
  * 返 回 值:无
  */
void W25Q64_SectorErase(uint32_t Address)
{
	W25Q64_WriteEnable();						//写使能
	
	MySPI_Start();								//SPI起始
	MySPI_SwapByte(W25Q64_SECTOR_ERASE_4KB);	//交换发送扇区擦除的指令
	MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位
	MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位
	MySPI_SwapByte(Address);					//交换发送地址7~0位
	MySPI_Stop();								//SPI终止
	
	W25Q64_WaitBusy();							//等待忙
}

/**
  * 函    数:W25Q64读取数据
  * 参    数:Address 读取数据的起始地址,范围:0x000000~0x7FFFFF
  * 参    数:DataArray 用于接收读取数据的数组,通过输出参数返回
  * 参    数:Count 要读取数据的数量,范围:0~0x800000
  * 返 回 值:无
  */
void W25Q64_ReadData(uint32_t Address, uint8_t *DataArray, uint32_t Count)
{
	uint32_t i;
	MySPI_Start();								//SPI起始
	MySPI_SwapByte(W25Q64_READ_DATA);			//交换发送读取数据的指令
	MySPI_SwapByte(Address >> 16);				//交换发送地址23~16位
	MySPI_SwapByte(Address >> 8);				//交换发送地址15~8位
	MySPI_SwapByte(Address);					//交换发送地址7~0位
	for (i = 0; i < Count; i ++)				//循环Count次
	{
		DataArray[i] = MySPI_SwapByte(W25Q64_DUMMY_BYTE);	//依次在起始地址后读取数据
	}
	MySPI_Stop();								//SPI终止
}

5.4 W25Q64.h

复制代码
#ifndef __W25Q64_H
#define __W25Q64_H

void W25Q64_Init(void);
void W25Q64_ReadID(uint8_t *MID, uint16_t *DID);
void W25Q64_PageProgram(uint32_t Address, uint8_t *DataArray, uint16_t Count);
void W25Q64_SectorErase(uint32_t Address);
void W25Q64_ReadData(uint32_t Address, uint8_t *DataArray, uint32_t Count);

#endif

5.5 W25Q64_Ins.h

复制代码
#ifndef __W25Q64_INS_H
#define __W25Q64_INS_H

#define W25Q64_WRITE_ENABLE							0x06
#define W25Q64_WRITE_DISABLE						0x04
#define W25Q64_READ_STATUS_REGISTER_1				0x05
#define W25Q64_READ_STATUS_REGISTER_2				0x35
#define W25Q64_WRITE_STATUS_REGISTER				0x01
#define W25Q64_PAGE_PROGRAM							0x02
#define W25Q64_QUAD_PAGE_PROGRAM					0x32
#define W25Q64_BLOCK_ERASE_64KB						0xD8
#define W25Q64_BLOCK_ERASE_32KB						0x52
#define W25Q64_SECTOR_ERASE_4KB						0x20
#define W25Q64_CHIP_ERASE							0xC7
#define W25Q64_ERASE_SUSPEND						0x75
#define W25Q64_ERASE_RESUME							0x7A
#define W25Q64_POWER_DOWN							0xB9
#define W25Q64_HIGH_PERFORMANCE_MODE				0xA3
#define W25Q64_CONTINUOUS_READ_MODE_RESET			0xFF
#define W25Q64_RELEASE_POWER_DOWN_HPM_DEVICE_ID		0xAB
#define W25Q64_MANUFACTURER_DEVICE_ID				0x90
#define W25Q64_READ_UNIQUE_ID						0x4B
#define W25Q64_JEDEC_ID								0x9F
#define W25Q64_READ_DATA							0x03
#define W25Q64_FAST_READ							0x0B
#define W25Q64_FAST_READ_DUAL_OUTPUT				0x3B
#define W25Q64_FAST_READ_DUAL_IO					0xBB
#define W25Q64_FAST_READ_QUAD_OUTPUT				0x6B
#define W25Q64_FAST_READ_QUAD_IO					0xEB
#define W25Q64_OCTAL_WORD_READ_QUAD_IO				0xE3

#define W25Q64_DUMMY_BYTE							0xFF

#endif

5.6 main.c

复制代码
#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "W25Q64.h"

uint8_t MID;							//定义用于存放MID号的变量
uint16_t DID;							//定义用于存放DID号的变量

uint8_t ArrayWrite[] = {0x01, 0x02, 0x03, 0x04};	//定义要写入数据的测试数组
uint8_t ArrayRead[4];								//定义要读取数据的测试数组

int main(void)
{
	/*模块初始化*/
	OLED_Init();						//OLED初始化
	W25Q64_Init();						//W25Q64初始化
	
	/*显示静态字符串*/
	OLED_ShowString(1, 1, "MID:   DID:");
	OLED_ShowString(2, 1, "W:");
	OLED_ShowString(3, 1, "R:");
	
	/*显示ID号*/
	W25Q64_ReadID(&MID, &DID);			//获取W25Q64的ID号
	OLED_ShowHexNum(1, 5, MID, 2);		//显示MID
	OLED_ShowHexNum(1, 12, DID, 4);		//显示DID
	
	/*W25Q64功能函数测试*/
	W25Q64_SectorErase(0x000000);					//扇区擦除
	W25Q64_PageProgram(0x000000, ArrayWrite, 4);	//将写入数据的测试数组写入到W25Q64中
	
	W25Q64_ReadData(0x000000, ArrayRead, 4);		//读取刚写入的测试数据到读取数据的测试数组中
	
	/*显示数据*/
	OLED_ShowHexNum(2, 3, ArrayWrite[0], 2);		//显示写入数据的测试数组
	OLED_ShowHexNum(2, 6, ArrayWrite[1], 2);
	OLED_ShowHexNum(2, 9, ArrayWrite[2], 2);
	OLED_ShowHexNum(2, 12, ArrayWrite[3], 2);
	
	OLED_ShowHexNum(3, 3, ArrayRead[0], 2);			//显示读取数据的测试数组
	OLED_ShowHexNum(3, 6, ArrayRead[1], 2);
	OLED_ShowHexNum(3, 9, ArrayRead[2], 2);
	OLED_ShowHexNum(3, 12, ArrayRead[3], 2);
	
	while (1)
	{
		
	}
}
相关推荐
SundayBear3 小时前
零基础入门MQTT协议
c语言·单片机
嗯嗯=4 小时前
STM32单片机学习篇9
stm32·单片机·学习
小范馆8 小时前
ESP各模组的引脚图-小智接线图
stm32
松涛和鸣9 小时前
DAY63 IMX6ULL ADC Driver Development
linux·运维·arm开发·单片机·嵌入式硬件·ubuntu
想放学的刺客12 小时前
单片机嵌入式试题(第23期)嵌入式系统电源管理策略设计、嵌入式系统通信协议栈实现要点两个全新主题。
c语言·stm32·单片机·嵌入式硬件·物联网
猫猫的小茶馆12 小时前
【Linux 驱动开发】五. 设备树
linux·arm开发·驱动开发·stm32·嵌入式硬件·mcu·硬件工程
YouEmbedded13 小时前
解码内部集成电路(IIC)与OLED屏
stm32·0.96寸oled·硬件iic·软件模拟iic·图片取模·汉字取模
jghhh0113 小时前
基于上海钜泉科技HT7017单相计量芯片的参考例程实现
科技·单片机·嵌入式硬件
恶魔泡泡糖14 小时前
51单片机外部中断
c语言·单片机·嵌入式硬件·51单片机
意法半导体STM3214 小时前
【官方原创】如何基于DevelopPackage开启安全启动(MP15x) LAT6036
javascript·stm32·单片机·嵌入式硬件·mcu·安全·stm32开发