利用opencv自带的Haar级联分类器模型

OpenCV自带的Haar级联分类器模型:

haarcascade_eye.xml: 这个模型用于检测眼睛。

haarcascade_eye_tree_eyeglasses.xml: 这个模型用于检测眼镜。

haarcascade_frontalcatface.xml: 这个模型用于检测猫脸。 haarcascade_frontalcatface_extended.xml: 这个模型用于扩展的猫脸检测。 haarcascade_frontalface_alt.xml: 这个模型是一个备用的面部检测模型。 haarcascade_frontalface_alt2.xml: 这个模型是另一个备用的面部检测模型。 haarcascade_frontalface_alt_tree.xml: 这个模型是用于面部检测的备用树模型。 haarcascade_frontalface_default.xml: 这个模型是用于面部检测的默认模型。 haarcascade_fullbody.xml: 这个模型用于全身检测。

haarcascade_lefteye_2splits.xml: 这个模型用于检测左眼。 haarcascade_licence_plate_rus_16stages.xml: 这个模型用于检测俄罗斯车牌。 haarcascade_lowerbody.xml: 这个模型用于下半身检测。

haarcascade_profileface.xml: 这个模型用于侧面脸部检测。

haarcascade_righteye_2splits.xml: 这个模型用于检测右眼。 haarcascade_russian_plate_number.xml: 这个模型用于检测俄罗斯车牌号码。 haarcascade_smile.xml: 这个模型用于微笑检测。

这些模型都在安装的opencv-source路径下

人脸检测实例

复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/imgproc/imgproc.hpp>

int main()
{
    // 加载人脸分类器
    cv::CascadeClassifier faceCascade;

    //分类器文件下载地址: https://github.com/opencv/opencv/tree/master/data/haarcascades
    //在OpenCV的源码目录下其实也有(opencv\build\etc\haarcascades)。
    faceCascade.load("C:/haarcascade_frontalface_alt2.xml");
    // 打开摄像头
    cv::VideoCapture capture(0);
    if (!capture.isOpened())
    {
        std::cout << "无法打开摄像头" << std::endl;
        return -1;
    }

    // 创建窗口
    cv::namedWindow("Face Detection", cv::WINDOW_NORMAL);

    while (true)
    {
        cv::Mat frame;
        capture >> frame; // 读取视频帧

        // 将彩色图像转换为灰度图像以加快处理速度
        cv::Mat grayFrame;
        cv::cvtColor(frame, grayFrame, cv::COLOR_BGR2GRAY);

        // 对图像进行人脸检测
        std::vector<cv::Rect> faces;
        faceCascade.detectMultiScale(grayFrame, faces, 1.1, 3, 0, cv::Size(30, 30));

        // 在图像上绘制人脸边界框
        for (size_t i = 0; i < faces.size(); i++)
        {
            cv::rectangle(frame, faces[i], cv::Scalar(0, 255, 0), 2);
        }

        // 显示结果图像
        cv::imshow("Face Detection", frame);

        // 按下ESC键退出循环
        if (cv::waitKey(1) == 27)
            break;
    }

    // 释放摄像头和窗口资源
    capture.release();
    cv::destroyAllWindows();

    return 0;
}
相关推荐
杰夫贾维斯10 分钟前
CentOS Linux 8 的系统部署 Qwen2.5-7B -Instruct-AWQ
linux·运维·人工智能·机器学习·centos
m0_7033236711 分钟前
SEO外包服务甄选指南:避开陷阱,精准匹配
大数据·人工智能
金智维科技17 分钟前
多系统、跨流程、高重复?看烟草企业如何用数字员工撬动运营变革
人工智能
PyAIExplorer28 分钟前
图像处理中的边缘填充:原理与实践
图像处理·人工智能
AI大模型技术社38 分钟前
🔥企业级必读:筛选高可用MCP服务的黄金标准
人工智能·mcp
zzywxc7871 小时前
AI技术通过提示词工程(Prompt Engineering)正在深度重塑职场生态和行业格局,这种变革不仅体现在效率提升,更在重构人机协作模式。
java·大数据·开发语言·人工智能·spring·重构·prompt
Java中文社群1 小时前
炸裂!Dify新版发布:内置MCP双向支持!
人工智能·后端
金智维科技1 小时前
智能化财务管理如何简化审批流程?
人工智能
HollowKnightZ1 小时前
论文阅读笔记:VI-Net: Boosting Category-level 6D Object Pose Estimation
人工智能·深度学习·计算机视觉
野豹商业评论1 小时前
拼多多正在错失即时零售?
人工智能·零售