利用opencv自带的Haar级联分类器模型

OpenCV自带的Haar级联分类器模型:

haarcascade_eye.xml: 这个模型用于检测眼睛。

haarcascade_eye_tree_eyeglasses.xml: 这个模型用于检测眼镜。

haarcascade_frontalcatface.xml: 这个模型用于检测猫脸。 haarcascade_frontalcatface_extended.xml: 这个模型用于扩展的猫脸检测。 haarcascade_frontalface_alt.xml: 这个模型是一个备用的面部检测模型。 haarcascade_frontalface_alt2.xml: 这个模型是另一个备用的面部检测模型。 haarcascade_frontalface_alt_tree.xml: 这个模型是用于面部检测的备用树模型。 haarcascade_frontalface_default.xml: 这个模型是用于面部检测的默认模型。 haarcascade_fullbody.xml: 这个模型用于全身检测。

haarcascade_lefteye_2splits.xml: 这个模型用于检测左眼。 haarcascade_licence_plate_rus_16stages.xml: 这个模型用于检测俄罗斯车牌。 haarcascade_lowerbody.xml: 这个模型用于下半身检测。

haarcascade_profileface.xml: 这个模型用于侧面脸部检测。

haarcascade_righteye_2splits.xml: 这个模型用于检测右眼。 haarcascade_russian_plate_number.xml: 这个模型用于检测俄罗斯车牌号码。 haarcascade_smile.xml: 这个模型用于微笑检测。

这些模型都在安装的opencv-source路径下

人脸检测实例

#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/imgproc/imgproc.hpp>

int main()
{
    // 加载人脸分类器
    cv::CascadeClassifier faceCascade;

    //分类器文件下载地址: https://github.com/opencv/opencv/tree/master/data/haarcascades
    //在OpenCV的源码目录下其实也有(opencv\build\etc\haarcascades)。
    faceCascade.load("C:/haarcascade_frontalface_alt2.xml");
    // 打开摄像头
    cv::VideoCapture capture(0);
    if (!capture.isOpened())
    {
        std::cout << "无法打开摄像头" << std::endl;
        return -1;
    }

    // 创建窗口
    cv::namedWindow("Face Detection", cv::WINDOW_NORMAL);

    while (true)
    {
        cv::Mat frame;
        capture >> frame; // 读取视频帧

        // 将彩色图像转换为灰度图像以加快处理速度
        cv::Mat grayFrame;
        cv::cvtColor(frame, grayFrame, cv::COLOR_BGR2GRAY);

        // 对图像进行人脸检测
        std::vector<cv::Rect> faces;
        faceCascade.detectMultiScale(grayFrame, faces, 1.1, 3, 0, cv::Size(30, 30));

        // 在图像上绘制人脸边界框
        for (size_t i = 0; i < faces.size(); i++)
        {
            cv::rectangle(frame, faces[i], cv::Scalar(0, 255, 0), 2);
        }

        // 显示结果图像
        cv::imshow("Face Detection", frame);

        // 按下ESC键退出循环
        if (cv::waitKey(1) == 27)
            break;
    }

    // 释放摄像头和窗口资源
    capture.release();
    cv::destroyAllWindows();

    return 0;
}
相关推荐
大彬聊编程5 分钟前
清华大学102页PPT 《deepseek从入门到精通》
人工智能
明月与玄武10 分钟前
Apifox 增强 AI 接口调试功能:自动合并 SSE 响应、展示DeepSeek思考过程
人工智能·apifox·增强 ai 接口调试功能
虚假程序设计23 分钟前
opencv 自适应阈值
人工智能·opencv·计算机视觉
沐欣工作室_lvyiyi35 分钟前
基于物联网的家庭版防疫面罩设计与实现(论文+源码)
人工智能·stm32·单片机·物联网·目标跟踪
xzzd_jokelin1 小时前
Spring AI 接入 DeepSeek:开启智能应用的新篇章
java·人工智能·spring·ai·大模型·rag·deepseek
简简单单做算法1 小时前
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
人工智能·lstm·bilstm·woa-bilstm·双向长短期记忆网络·woa鲸鱼优化·序列预测
星霜旅人1 小时前
开源机器学习框架
人工智能·机器学习·开源
资源大全免费分享1 小时前
清华大学第五版《DeepSeek与AI幻觉》附五版合集下载方法
人工智能
龚大龙1 小时前
机器学习(李宏毅)——RL(强化学习)
人工智能·机器学习
LaughingZhu1 小时前
PH热榜 | 2025-02-23
前端·人工智能·经验分享·搜索引擎·产品运营