利用opencv自带的Haar级联分类器模型

OpenCV自带的Haar级联分类器模型:

haarcascade_eye.xml: 这个模型用于检测眼睛。

haarcascade_eye_tree_eyeglasses.xml: 这个模型用于检测眼镜。

haarcascade_frontalcatface.xml: 这个模型用于检测猫脸。 haarcascade_frontalcatface_extended.xml: 这个模型用于扩展的猫脸检测。 haarcascade_frontalface_alt.xml: 这个模型是一个备用的面部检测模型。 haarcascade_frontalface_alt2.xml: 这个模型是另一个备用的面部检测模型。 haarcascade_frontalface_alt_tree.xml: 这个模型是用于面部检测的备用树模型。 haarcascade_frontalface_default.xml: 这个模型是用于面部检测的默认模型。 haarcascade_fullbody.xml: 这个模型用于全身检测。

haarcascade_lefteye_2splits.xml: 这个模型用于检测左眼。 haarcascade_licence_plate_rus_16stages.xml: 这个模型用于检测俄罗斯车牌。 haarcascade_lowerbody.xml: 这个模型用于下半身检测。

haarcascade_profileface.xml: 这个模型用于侧面脸部检测。

haarcascade_righteye_2splits.xml: 这个模型用于检测右眼。 haarcascade_russian_plate_number.xml: 这个模型用于检测俄罗斯车牌号码。 haarcascade_smile.xml: 这个模型用于微笑检测。

这些模型都在安装的opencv-source路径下

人脸检测实例

复制代码
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/objdetect/objdetect.hpp>
#include <opencv2/imgproc/imgproc.hpp>

int main()
{
    // 加载人脸分类器
    cv::CascadeClassifier faceCascade;

    //分类器文件下载地址: https://github.com/opencv/opencv/tree/master/data/haarcascades
    //在OpenCV的源码目录下其实也有(opencv\build\etc\haarcascades)。
    faceCascade.load("C:/haarcascade_frontalface_alt2.xml");
    // 打开摄像头
    cv::VideoCapture capture(0);
    if (!capture.isOpened())
    {
        std::cout << "无法打开摄像头" << std::endl;
        return -1;
    }

    // 创建窗口
    cv::namedWindow("Face Detection", cv::WINDOW_NORMAL);

    while (true)
    {
        cv::Mat frame;
        capture >> frame; // 读取视频帧

        // 将彩色图像转换为灰度图像以加快处理速度
        cv::Mat grayFrame;
        cv::cvtColor(frame, grayFrame, cv::COLOR_BGR2GRAY);

        // 对图像进行人脸检测
        std::vector<cv::Rect> faces;
        faceCascade.detectMultiScale(grayFrame, faces, 1.1, 3, 0, cv::Size(30, 30));

        // 在图像上绘制人脸边界框
        for (size_t i = 0; i < faces.size(); i++)
        {
            cv::rectangle(frame, faces[i], cv::Scalar(0, 255, 0), 2);
        }

        // 显示结果图像
        cv::imshow("Face Detection", frame);

        // 按下ESC键退出循环
        if (cv::waitKey(1) == 27)
            break;
    }

    // 释放摄像头和窗口资源
    capture.release();
    cv::destroyAllWindows();

    return 0;
}
相关推荐
Hy行者勇哥几秒前
Seedance 全面解析:定义、使用指南、同类软件与完整攻略
人工智能·学习方法·视频
琅琊榜首202033 分钟前
AI赋能内容转化:小说转短剧实操全流程(零编程基础适配)
大数据·人工智能
青铜弟弟34 分钟前
基于物理的深度学习模型
人工智能·深度学习
是店小二呀34 分钟前
atvoss:异构计算视觉处理与AI模型加速套件深度解析
人工智能
MaoziShan1 小时前
CMU Subword Modeling | 07 Allomorphy
人工智能·机器学习·语言模型·自然语言处理
诚思报告YH1 小时前
生物制剂与生物类似药市场洞察:2026-2032年复合增长率(CAGR)为8.1%
大数据·人工智能·microsoft
得一录1 小时前
AI面试·高难度题
人工智能·面试·职场和发展
眼镜哥(with glasses)1 小时前
Steel Division 2(钢铁之师 2)第一次MOD 制作步骤
人工智能
向量引擎小橙1 小时前
视觉艺术的“奇点”:深度拆解 Gemini-3-Pro-Image-Preview 绘画模型,看这只“香蕉”如何重塑 AI 创作逻辑!
人工智能·python·gpt·深度学习·llama
AI周红伟1 小时前
周红伟:数字人智能体构建实操,《数字人智能体部署应用:数字人大模型和智能体+Skills+RAG+Agent+Claude Code的部署应用案例实操》
人工智能