基于opencv的车辆识别系统

车辆画框

使用OpenCV和Tkinter库来创建一个简单的图形用户界面(GUI),用户可以通过这个界面选择一张图片,并使用Haar级联分类器来检测图片中的汽车。


导入所需的库

cv2 是OpenCV库,用于图像处理;os 提供了一种方便的方式来使用操作系统依赖的功能;numpy 是一个强大的数学库,用于进行数值计算;PIL(Pillow)和ImageTk 用于图像处理和与Tkinter的兼容;Tk, filedialog, Button, Label, Canvas, NW 都是Tkinter库的一部分,用于创建GUI。

python 复制代码
import cv2
import os
import numpy as np
from PIL import Image, ImageTk
from tkinter import Tk, filedialog, Button, Label, Canvas, NW

加载Haar级联分类器

一个预训练的模型,用于检测图像中的汽车。

python 复制代码
car_cascade = cv2.CascadeClassifier('haarcascade_car.xml')

主程序

python 复制代码
def detect_cars_in_image():

定义一个函数 detect_cars_in_image,用于处理图像并检测其中的汽车。

python 复制代码
		file_path = filedialog.askopenfilename()

弹出一个文件选择对话框,允许用户选择一个图像文件,并获取文件的路径。

python 复制代码
		if file_path:

检查是否选择了文件。

python 复制代码
		img = Image.open(file_path)

使用PIL库打开选择的图像文件。

python 复制代码
		img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)

将图像转换为NumPy数组,并将其从RGB颜色空间转换为BGR颜色空间,因为OpenCV使用BGR。

python 复制代码
		gray = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY)

将图像转换为灰度图,因为Haar级联分类器通常在灰度图像上进行训练和检测。

python 复制代码
		cars = car_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=4)

使用Haar级联分类器检测灰度图像中的汽车,返回检测到的汽车的边界框列表。

python 复制代码
		for (x, y, w, h) in cars:
			cv2.rectangle(img_cv, (x, y), (x + w, y + h), (0, 0, 255), 2)

遍历检测到的每个汽车边界框,并在原始图像上绘制红色矩形框。

python 复制代码
		img = Image.fromarray(cv2.cvtColor(img_cv, cv2.COLOR_BGR2RGB))

将处理后的图像转换回RGB颜色空间,并转换回PIL图像格式。

python 复制代码
		img = img.resize((600, 500), Image.LANCZOS)

调整图像大小以适应画布。

python 复制代码
		img_tk = ImageTk.PhotoImage(img)

创建一个Tkinter兼容的图像对象。

python 复制代码
		canvas.create_image(0, 0, anchor=NW, image=img_tk)

在画布上显示图像。

python 复制代码
		canvas.image = img_tk

保持对图像对象的引用,防止它被垃圾回收。

python 复制代码
		root.update()

更新Tkinter窗口以显示新图像。

python 复制代码
root = Tk()
root.title("Car Detection")

创建Tkinter窗口,并设置标题为 "Car Detection"。

python 复制代码
canvas = Canvas(root, width=600, height=500)
canvas.pack()

创建一个600x500大小的画布,并将其添加到窗口中。

python 复制代码
label = Label(root, text="Click the button to select an image.")
label.pack(pady=10)

创建一个标签,提示用户点击按钮选择图像,并将其添加到窗口中。

python 复制代码
button = Button(root, text="Select Image", command=detect_cars_in_image)
button.pack(pady=5)

创建一个按钮,当点击时调用 detect_cars_in_image 函数,并将其添加到窗口中。

python 复制代码
root.mainloop()

启动Tkinter事件循环,这样用户界面就可以响应用户的操作了。

相关推荐
春末的南方城市10 分钟前
开源音乐分离器Audio Decomposition:可实现盲源音频分离,无需外部乐器分离库,从头开始制作。将音乐转换为五线谱的程序
人工智能·计算机视觉·aigc·音视频
视觉小萌新22 分钟前
VScode+opencv——关于opencv多张图片拼接成一张图片的算法
vscode·opencv·算法
矢量赛奇32 分钟前
比ChatGPT更酷的AI工具
人工智能·ai·ai写作·视频
KuaFuAI40 分钟前
微软推出的AI无代码编程微应用平台GitHub Spark和国产AI原生无代码工具CodeFlying比到底咋样?
人工智能·github·aigc·ai编程·codeflying·github spark·自然语言开发软件
Make_magic1 小时前
Git学习教程(更新中)
大数据·人工智能·git·elasticsearch·计算机视觉
shelly聊AI1 小时前
语音识别原理:AI 是如何听懂人类声音的
人工智能·语音识别
源于花海1 小时前
论文学习(四) | 基于数据驱动的锂离子电池健康状态估计和剩余使用寿命预测
论文阅读·人工智能·学习·论文笔记
雷龙发展:Leah1 小时前
离线语音识别自定义功能怎么用?
人工智能·音频·语音识别·信号处理·模块测试
4v1d1 小时前
边缘计算的学习
人工智能·学习·边缘计算
风之馨技术录1 小时前
智谱AI清影升级:引领AI视频进入音效新时代
人工智能·音视频