机器学习课程复习——决策树

Q:这三个算法哪一个可以用来做回归?

CART

Q:这学期学过的分类算法有哪些?

支持向量机、决策树、k近邻、逻辑回归、朴素贝叶斯、ANN

(注意区分分类算法与聚类算法)

Q:计算题

根据以上条件,生成相应的决策树

1. ID3算法

2. C4.5算法

3. CART算法

Q:剪枝的逻辑?

(由于决策树容易出现过拟合的情况,所以我们需要对他剪枝)

  1. 信息增益
  2. 精度
  3. 泛化性

Q:CART算法与前两个算法的不同?

  1. 基尼指数
  2. 二分类

改进

  1. 随机森林:通过集成多个决策树来提高模型的稳定性和准确性。
  2. 梯度提升树:通过boosting方法提升决策树的性能。
相关推荐
这张生成的图像能检测吗1 小时前
(论文速读)EfficientTrain++: 高效视觉骨干训练的通用课程学习
人工智能·深度学习·计算机视觉·训练方法
晚霞的不甘2 小时前
CANN:华为全栈AI计算框架的深度解析(终极扩展版 · 完整篇)
人工智能·华为
lisw055 小时前
6G频段与5G频段有何不同?
人工智能·机器学习
2501_941623326 小时前
人工智能赋能智慧农业互联网应用:智能种植、农业数据分析与产量优化实践探索》
大数据·人工智能
不爱吃糖的程序媛7 小时前
华为 CANN:昇腾 AI 的异构计算架构核心与开源生态解析
人工智能·华为·架构
AKAMAI7 小时前
从客户端自适应码率流媒体迁移到服务端自适应码率流媒体
人工智能·云计算
jinxinyuuuus7 小时前
GTA 风格 AI 生成器:跨IP融合中的“视觉语义冲突”与风格适配损失
人工智能·网络协议
如何原谅奋力过但无声7 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API7 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr