强化学习专题:强化学习知识梳理(一)

2024/6/23:

前段时间有幸完成了大学期间的第一篇论文。在面试之前复盘一下关于自己论文中DQN的一些相关点。

浅谈主要区别(在线 or 离线)

首先,一切的开始是强化学习中时序差分方程,这体现了强化学习方法的优化策略。在看方程之前,先要理解Q值的概念------即当前状态S下采取动作A继续下去能够得到的最佳收益

该方程通过Target值 (采取当前动作后得到的奖励 + 采取动作后下一个状态根据某个策略选取动作的Q值)减去估计值 (当前估计的当前状态采取A的Q值)再乘上一个类似于学习率的量来更新当前估计的当前状态的Q值,而方程的目的就是来逼近真正的最佳收益。可能有点绕,但是从类似于动态规划的角度看会明白一点。

下面是on-policy和off-policy策略的区别:

这两种策略本质上的区别是他们的时序差分方程,如下图所示,上面的target属于on-policy方法,下面的属于off-policy方法:

on-policy 主要应用于Sarsa方法,是一种在线的交互式的学习方法,大概就像是。采取这种策略的方法通过当前状态下选取的一定会执行的action来优化自身的Q表格。action的选取可以通过随机选取,也可以根据贪婪策略选取,然后根据这个选取的action计算得到的结果来更新Q表格。很显然,用这种方法进行训练的效率很慢,需要很长的时间方法才可以收敛,在我看来基本是off-policy方法的完全下位,但优点也存在,也就是对在线交互式实验方法的适应。

从时序差分方程的角度看下面这张图,将其中的内容和方程中的联系起来看,就能大概理解sarsa做了什么:

off-policy是一种更加常用的方法,Q-learning和DQN都属于这一类的方法。从bellman方程中获取target值的区别就可以看到,他使用下个状态的采取所有动作的最佳Q值来优化,因此收敛也更快。

参考:在线/离线策略区别

面向新手:从零学习强化学习

相关推荐
仙人掌_lz1 天前
深度理解用于多智能体强化学习的单调价值函数分解QMIX算法:基于python从零实现
python·算法·强化学习·rl·价值函数
Mr.Winter`3 天前
深度强化学习 | 图文详细推导软性演员-评论家SAC算法原理
人工智能·深度学习·神经网络·机器学习·数据挖掘·机器人·强化学习
IT猿手3 天前
基于强化学习 Q-learning 算法求解城市场景下无人机三维路径规划研究,提供完整MATLAB代码
神经网络·算法·matlab·人机交互·无人机·强化学习·无人机三维路径规划
仙人掌_lz5 天前
理解多智能体深度确定性策略梯度MADDPG算法:基于python从零实现
python·算法·强化学习·策略梯度·rl
仙人掌_lz5 天前
深入理解深度Q网络DQN:基于python从零实现
python·算法·强化学习·dqn·rl
IT猿手6 天前
基于 Q-learning 的城市场景无人机三维路径规划算法研究,可以自定义地图,提供完整MATLAB代码
深度学习·算法·matlab·无人机·强化学习·qlearning·无人机路径规划
Two summers ago7 天前
arXiv2025 | TTRL: Test-Time Reinforcement Learning
论文阅读·人工智能·机器学习·llm·强化学习
仙人掌_lz8 天前
为特定领域微调嵌入模型:打造专属的自然语言处理利器
人工智能·ai·自然语言处理·embedding·强化学习·rl·bge
碣石潇湘无限路9 天前
【AI】基于生活案例的LLM强化学习(入门帖)
人工智能·经验分享·笔记·生活·openai·强化学习
人类发明了工具10 天前
【强化学习】强化学习算法 - 多臂老虎机问题
机器学习·强化学习·多臂老虎机