Pytorch强化学习demo

训练模型, 让它的输出更接近0.8。当离0.8越大, reward越小, 甚至为负, 那就代表着奖励更少, 惩罚更多。比如现在模型输出是0.5, 那么就会有对应的reward值, 代表正奖惩力度。那么当loss向前传导, step()

更新权重时, 它知道0.5会有惩罚, 但它怎么知道要大于0.5的方向调整, 还是小于0.5的方向调整呢。它其实会对reward = 1.0 - diff * 5这个式子求导处理。因此它知道这个0.5小了。如果输出的时0.9,它会知道大了。

它会根据reward = 1.0 - diff * 5知道调整的方向. 就像调节声音一样,当你向左拧按钮,有人告诉你声音小了。往右拧,告诉你大了。多次调整就能调整到一个合适的值了。

一个值x输入model, 经过神经网络fc, 得到输出, 然后输出再经过与标注的值计算loss, 或者强化学习, 设置reward和loss策略, 从loss到x都是张量, 全都被计算图连接着。因此loss.backward()会向前传导所有计算图里的张量, optimizer.step()会根据梯度的方向来改变网络中的权重参数。

python 复制代码
import torch
import torch.nn as nn
import torch.optim as optim

# --- 模型:输入1,输出一个数(0~1之间)
class SimpleModel(nn.Module):
    def __init__(self):
        super().__init__()
        #    #根据fc.weight.grad和fc.bias.grad来去更新fc.bias和fc.weight的值对么
        self.fc = nn.Linear(1, 1)   #     self.fc = nn.Linear(1, 1)  # 输入是一个固定的常数1 y=x×w+b   w 就是 weight,b 就是 bias。  在这个小例子里,唯一在学习的,就是这个 Linear 层的 weight 和 bias。
        self.sigmoid = nn.Sigmoid()  # 输出限制在 [0,1]  Sigmoid()是一个激活函数, 把任何输入映射成[0, 1]之间

    def forward(self, x):
        return self.sigmoid(self.fc(x))


model = SimpleModel()
optimizer = optim.Adam(model.parameters(), lr=0.1)

target_value = 0.8  # 我们希望模型的输出接近这个值

# --- 训练循环 ---
for step in range(50):
    x = torch.ones(1,1)                 # 输入随便,就给常数1
    output = model(x)                   # 模型输出一个值,范围[0,1]

    # 奖励函数:越接近 target_value 越好
    diff = abs(output.item() - target_value)
    reward = 1.0 - diff * 5  # k=5,距离越大惩罚越大

    # 损失函数:-reward * log(output)
    logp = torch.log(output)
    loss = -reward * logp

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    print(f"Step {step}: output={output.item():.3f}, reward={reward:.3f}, loss={loss.item():.3f}")



# loss.backward()   # 计算出梯度,存到 fc.weight.grad 和 fc.bias.grad
# optimizer.step()  # 用梯度更新 fc.weight 和 fc.bias 的值


# optimizer.step()
# 作用:根据梯度更新参数
# 例如用 SGD 的话,大概是:
# w:=w−η⋅gradw​
# b:=b−η⋅gradb​
# 其中 η 就是学习率 (lr)。
# 用 Adam 的话,更新更复杂,但核心思想一样:用 .grad 来更新 weight 和 bias


    
相关推荐
源于花海14 小时前
迁移学习相关的期刊和会议
人工智能·机器学习·迁移学习·期刊会议
不懒不懒16 小时前
【线性 VS 逻辑回归:一篇讲透两种核心回归模型】
人工智能·机器学习
冰西瓜60017 小时前
从项目入手机器学习——(四)特征工程(简单特征探索)
人工智能·机器学习
小鸡吃米…18 小时前
机器学习中的代价函数
人工智能·python·机器学习
All The Way North-19 小时前
彻底掌握 RNN(实战):PyTorch API 详解、多层RNN、参数解析与输入机制
pytorch·rnn·深度学习·循环神经网络·参数详解·api详解
童话名剑20 小时前
情感分类与词嵌入除偏(吴恩达深度学习笔记)
笔记·深度学习·分类
咋吃都不胖lyh20 小时前
CLIP 不是一个 “自主判断图像内容” 的图像分类模型,而是一个 “图文语义相似度匹配模型”—
人工智能·深度学习·机器学习
咚咚王者1 天前
人工智能之核心技术 深度学习 第七章 扩散模型(Diffusion Models)
人工智能·深度学习
逄逄不是胖胖1 天前
《动手学深度学习》-60translate实现
人工智能·python·深度学习
Ryan老房1 天前
无人机航拍图像标注-从采集到训练全流程
yolo·目标检测·机器学习·计算机视觉·目标跟踪·无人机