【昇思初学入门】第八天打卡-模型保存与加载

模型保存与加载

学习心得

  • 保存 CheckPoint 格式文件 ,在模型训练过程中,可以添加检查点(CheckPoint)用于保存模型的参数,以便进行推理及再训练使用。如果想继续在不同硬件平台上做推理,可通过网络和CheckPoint格式文件生成对应的MINDIR、AIR和ONNX格式文件。

    python 复制代码
    model = network()
    mindspore.save_checkpoint(model, "model.ckpt")

    可以通过CheckpointConfig对象可以设置CheckPoint的保存策略。

    • save_checkpoint_steps表示每隔多少个step保存一次。
    • keep_checkpoint_max表示最多保留CheckPoint文件的数量。
    • prefix表示生成CheckPoint文件的前缀名。
    • directory表示存放文件的目录。
    python 复制代码
    from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
    config_ck = CheckpointConfig(save_checkpoint_steps=32, keep_checkpoint_max=10)
    ckpoint_cb = ModelCheckpoint(prefix='resnet50', directory=None, config=config_ck)
    model.train(epoch_num, dataset, callbacks=ckpoint_cb)

    要加载模型权重,需要先创建相同模型的实例,然后使用load_checkpointload_param_into_net方法加载参数。

    python 复制代码
    	model = network()
    	param_dict = mindspore.load_checkpoint("model.ckpt")
    	param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
    	print(param_not_load)

    param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功。

    cmd 复制代码
    [] 
  1. 保存和加载MindIR ,当有了CheckPoint文件后,如果想继续在MindSpore Lite端侧做推理,需要通过网络和CheckPoint生成对应的MINDIR格式模型文件。

    • 统一表示:MindIR作为MindSpore云侧(训练)和端侧(推理)的统一模型文件,同时存储了网络结构和权重参数值。这使得MindSpore能够在不同的硬件平台上实现一次训练多次部署的能力。
    • 导出MindIR:MindSpore提供了export接口,可以直接将模型保存为MindIR格式。
    • 保存模型
    python 复制代码
    model = network()
    inputs = Tensor(np.ones([1, 1, 28, 28]).astype(np.float32))
    mindspore.export(model, inputs, file_name="model", file_format="MINDIR")
    • 加载模型
    python 复制代码
    mindspore.set_context(mode=mindspore.GRAPH_MODE)
    graph = mindspore.load("model.mindir")
    model = nn.GraphCell(graph)
    outputs = model(inputs)
    print(outputs.shape)
相关推荐
惯导马工16 小时前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
隐语SecretFlow2 天前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
Billy_Zuo2 天前
人工智能深度学习——卷积神经网络(CNN)
人工智能·深度学习·cnn
羊羊小栈2 天前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy2 天前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
九章云极AladdinEdu2 天前
超参数自动化调优指南:Optuna vs. Ray Tune 对比评测
运维·人工智能·深度学习·ai·自动化·gpu算力
研梦非凡2 天前
ICCV 2025|从粗到细:用于高效3D高斯溅射的可学习离散小波变换
人工智能·深度学习·学习·3d
通街市密人有2 天前
IDF: Iterative Dynamic Filtering Networks for Generalizable Image Denoising
人工智能·深度学习·计算机视觉
智数研析社2 天前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
心动啊1212 天前
深度神经网络1——梯度问题+标签数不够问题
人工智能·神经网络·dnn