【昇思初学入门】第八天打卡-模型保存与加载

模型保存与加载

学习心得

  • 保存 CheckPoint 格式文件 ,在模型训练过程中,可以添加检查点(CheckPoint)用于保存模型的参数,以便进行推理及再训练使用。如果想继续在不同硬件平台上做推理,可通过网络和CheckPoint格式文件生成对应的MINDIR、AIR和ONNX格式文件。

    python 复制代码
    model = network()
    mindspore.save_checkpoint(model, "model.ckpt")

    可以通过CheckpointConfig对象可以设置CheckPoint的保存策略。

    • save_checkpoint_steps表示每隔多少个step保存一次。
    • keep_checkpoint_max表示最多保留CheckPoint文件的数量。
    • prefix表示生成CheckPoint文件的前缀名。
    • directory表示存放文件的目录。
    python 复制代码
    from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
    config_ck = CheckpointConfig(save_checkpoint_steps=32, keep_checkpoint_max=10)
    ckpoint_cb = ModelCheckpoint(prefix='resnet50', directory=None, config=config_ck)
    model.train(epoch_num, dataset, callbacks=ckpoint_cb)

    要加载模型权重,需要先创建相同模型的实例,然后使用load_checkpointload_param_into_net方法加载参数。

    python 复制代码
    	model = network()
    	param_dict = mindspore.load_checkpoint("model.ckpt")
    	param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
    	print(param_not_load)

    param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功。

    cmd 复制代码
    [] 
  1. 保存和加载MindIR ,当有了CheckPoint文件后,如果想继续在MindSpore Lite端侧做推理,需要通过网络和CheckPoint生成对应的MINDIR格式模型文件。

    • 统一表示:MindIR作为MindSpore云侧(训练)和端侧(推理)的统一模型文件,同时存储了网络结构和权重参数值。这使得MindSpore能够在不同的硬件平台上实现一次训练多次部署的能力。
    • 导出MindIR:MindSpore提供了export接口,可以直接将模型保存为MindIR格式。
    • 保存模型
    python 复制代码
    model = network()
    inputs = Tensor(np.ones([1, 1, 28, 28]).astype(np.float32))
    mindspore.export(model, inputs, file_name="model", file_format="MINDIR")
    • 加载模型
    python 复制代码
    mindspore.set_context(mode=mindspore.GRAPH_MODE)
    graph = mindspore.load("model.mindir")
    model = nn.GraphCell(graph)
    outputs = model(inputs)
    print(outputs.shape)
相关推荐
nju_spy15 分钟前
论文阅读 - 深度学习端到端解决库存管理问题 - 有限时间范围内的多周期补货问题(Management Science)
人工智能·深度学习·动态规划·端到端·库存管理·两阶段pto·多周期补货问题
u***j32416 分钟前
深度学习实践
人工智能·深度学习
极客BIM工作室18 分钟前
LSTM门控结构:乘法设计的必然性分析
rnn·深度学习·lstm
r***d86519 分钟前
深度学习挑战
人工智能·深度学习
龙腾AI白云20 分钟前
国内外具身智能VLA模型深度解析(3)
深度学习·数据挖掘
道一云黑板报32 分钟前
大规模低代码系统推荐:知识图谱与 GNN 的性能优化策略
深度学习·神经网络·低代码·性能优化·知识图谱·推荐算法
武子康2 小时前
AI研究-129 Qwen2.5-Omni-7B 要点:显存、上下文、并发与成本
人工智能·深度学习·机器学习·ai·大模型·qwen·全模态
CoovallyAIHub2 小时前
基于SimCLR的自监督 YOLO:YOLOv5/8也能在低标注场景目标检测性能飙升
深度学习·算法·计算机视觉
S***t7142 小时前
深度学习迁移学习应用
人工智能·深度学习·迁移学习
晨非辰5 小时前
【数据结构初阶系列】归并排序全透视:从算法原理全分析到源码实战应用
运维·c语言·数据结构·c++·人工智能·python·深度学习