目录

时序预测 | Matlab基于Transformer多变量时间序列多步预测

目录

效果一览



基本介绍

1.Matlab基于Transformer多变量时间序列多步预测;

2.多变量时间序列数据集(负荷数据集),采用前96个时刻预测的特征和负荷数据预测未来96个时刻的负荷数据;

3.excel数据方便替换,运行环境matlab2023及以上,展示最后96个时间步的预测对比图,评价指标MAE、MAPE、RMSE、MSE、R2;

注:程序和数据放在一个文件夹。

4.程序语言为matlab,程序可出预测效果图,指标图;

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab基于Transformer多变量时间序列多步预测
python 复制代码
在单 GPU 上训练。
|============================================================|
|  轮  |  迭代  |    经过的时间     |  小批量 RMSE  |  小批量损失  |  基础学习率  |
|     |      |  (hh:mm:ss)  |            |         |         |
|============================================================|
|   1 |    1 |     00:00:00 |       5.52 |    15.2 |  0.0010 |
|  10 |   50 |     00:00:02 |       4.55 |    10.4 |  0.0010 |
|  20 |  100 |     00:00:04 |       1.57 |     1.2 |  0.0010 |
|  30 |  150 |     00:00:07 |       1.54 |     1.2 |  0.0010 |
|  40 |  200 |     00:00:09 |       0.81 |     0.3 |  0.0010 |
|  50 |  250 |     00:00:11 |       1.19 |     0.7 |  0.0010 |
|============================================================|
训练结束: 已完成最大轮数。
历时 12.257705 秒。
1.均方差(MSE):76636.1226
2.根均方差(RMSE):276.8323
3.平均绝对误差(MAE):226.3397
4.平均相对百分误差(MAPE):5.2361%
5.R2:90.0432%
                    MAE        MAPE       MSE      RMSE       R^2  
                   ______    ________    _____    ______    _______

    Transformer    226.34    0.052361    76636    276.83    0.90043

%% Set the hyper parameters for unet training
options0 = trainingOptions('adam', ...                 % 优化算法Adam
    'MaxEpochs', 150, ...                            % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', 0.01, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod',100, ...                   % 训练100次后开始调整学习率
    'LearnRateDropFactor',0.01, ...                    % 学习率调整因子
    'L2Regularization', 0.001, ...         % 正则化参数
    'ExecutionEnvironment', 'cpu',...                 % 训练环境
    'Verbose', 1, ...                                 % 关闭优化过程
    'Plots', 'none');                    % 画出曲线

参考资料

1\] http://t.csdn.cn/pCWSp \[2\] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501 \[3\] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文是转载文章,点击查看原文
如有侵权,请联系 xyy@jishuzhan.net 删除
相关推荐
zew10409945884 小时前
MATLAB实现电池剩余放电时间预测【电子信息专业】
开发语言·matlab·课设·电池剩余放电时间预测
可编程芯片开发14 小时前
基于时空相关性的风电功率预测模型matlab建模与仿真
matlab·时空相关性·风电功率预测模型
君莫笑∽GL14 小时前
深度学习的疑问--综合【2】:像CNN,GNN,transformer等这些模型都是用于提取特征,然后经过全连接层实现分类的吗?
深度学习·cnn·transformer
Mr_LeeCZ14 小时前
PyTorch 深度学习 || 6. Transformer | Ch6.1 Transformer 框架
pytorch·深度学习·transformer
带娃的IT创业者21 小时前
《AI大模型应知应会100篇》第4篇:Transformer架构深入浅出:大模型的基石
人工智能·架构·transformer
weixin_4284984921 小时前
使用MATIO库读取Matlab结构体(struct)数据的示例程序
matlab
阿昆的科研日常1 天前
Matlab进阶绘图第74期-带填充纹理的单组柱状图
开发语言·matlab·可视化·论文插图
tianyukun02231 天前
MATLAB学习笔记(二) 控制工程会用到的
笔记·学习·matlab
风筝超冷1 天前
Transformer - 多头自注意力机制复现
深度学习·机器学习·transformer
IT猿手1 天前
基于CNN-BiLSTM的深度Q网络(Deep Q-Network,DQN)求解移动机器人路径规划,MATLAB代码
网络·matlab·cnn