C# YoloV8 模型效果验证工具(OnnxRuntime+ByteTrack推理)

C# YoloV8 模型效果验证工具(OnnxRuntime+ByteTrack推理)

目录

效果

项目

代码

下载


效果

模型效果验证工具

项目

代码

using ByteTrack;

using OpenCvSharp;

using System;

using System.Collections.Generic;

using System.Diagnostics;

using System.Drawing;

using System.Drawing.Imaging;

using System.Threading;

using System.Threading.Tasks;

using System.Windows.Forms;

namespace C__yolov8_OnnxRuntime_ByteTrack_Demo

{

public partial class Form2 : Form

{

public Form2()

{

InitializeComponent();

}

string imgFilter = "图片|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";

YoloV8 yoloV8;

Mat image;

string image_path = "";

string model_path;

string video_path = "";

string videoFilter = "视频|*.mp4;*.avi;*.dav";

VideoCapture vcapture;

VideoWriter vwriter;

bool saveDetVideo = false;

ByteTracker tracker;

/// <summary>

/// 单图推理

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void button2_Click(object sender, EventArgs e)

{

if (image_path == "")

{

return;

}

button2.Enabled = false;

pictureBox2.Image = null;

textBox1.Text = "";

Application.DoEvents();

image = new Mat(image_path);

List<DetectionResult> detResults = yoloV8.Detect(image);

//绘制结果

Mat result_image = image.Clone();

foreach (DetectionResult r in detResults)

{

string info = $"{r.Class}:{r.Confidence:P0}";

//绘制

Cv2.PutText(result_image, info, new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);

Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2);

}

if (pictureBox2.Image != null)

{

pictureBox2.Image.Dispose();

}

pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());

textBox1.Text = yoloV8.DetectTime();

button2.Enabled = true;

}

/// <summary>

/// 窗体加载,初始化

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void Form1_Load(object sender, EventArgs e)

{

image_path = "test/dog.jpg";

pictureBox1.Image = new Bitmap(image_path);

model_path = "model/yolov8n.onnx";

yoloV8 = new YoloV8(model_path, "model/lable.txt");

}

/// <summary>

/// 选择图片

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void button1_Click_1(object sender, EventArgs e)

{

OpenFileDialog ofd = new OpenFileDialog();

ofd.Filter = imgFilter;

if (ofd.ShowDialog() != DialogResult.OK) return;

pictureBox1.Image = null;

image_path = ofd.FileName;

pictureBox1.Image = new Bitmap(image_path);

textBox1.Text = "";

pictureBox2.Image = null;

}

/// <summary>

/// 选择视频

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void button4_Click(object sender, EventArgs e)

{

OpenFileDialog ofd = new OpenFileDialog();

ofd.Filter = videoFilter;

ofd.InitialDirectory = Application.StartupPath + "\\test";

if (ofd.ShowDialog() != DialogResult.OK) return;

video_path = ofd.FileName;

textBox1.Text = video_path;

//pictureBox1.Image = null;

//pictureBox2.Image = null;

//button3_Click(null, null);

}

/// <summary>

/// 视频推理

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void button3_Click(object sender, EventArgs e)

{

if (video_path == "")

{

MessageBox.Show("请先选择视频!");

return;

}

textBox1.Text = "开始检测";

Application.DoEvents();

Thread thread = new Thread(new ThreadStart(VideoDetection));

thread.Start();

thread.Join();

textBox1.Text = "检测完成!";

}

void VideoDetection()

{

vcapture = new VideoCapture(video_path);

if (!vcapture.IsOpened())

{

MessageBox.Show("打开视频文件失败");

return;

}

tracker = new ByteTracker((int)vcapture.Fps, 200);

Mat frame = new Mat();

List<DetectionResult> detResults;

// 获取视频的fps

double videoFps = vcapture.Get(VideoCaptureProperties.Fps);

// 计算等待时间(毫秒)

int delay = (int)(1000 / videoFps);

Stopwatch _stopwatch = new Stopwatch();

if (checkBox1.Checked)

{

vwriter = new VideoWriter("out.mp4", FourCC.X264, vcapture.Fps, new OpenCvSharp.Size(vcapture.FrameWidth, vcapture.FrameHeight));

saveDetVideo = true;

}

else

{

saveDetVideo = false;

}

Cv2.NamedWindow("DetectionResult 按下ESC,退出", WindowFlags.Normal);

Cv2.ResizeWindow("DetectionResult 按下ESC,退出", vcapture.FrameWidth / 2, vcapture.FrameHeight / 2);

while (vcapture.Read(frame))

{

if (frame.Empty())

{

MessageBox.Show("读取失败");

return;

}

Mat mat_temp = frame.Clone();

_stopwatch.Restart();

delay = (int)(1000 / videoFps);

detResults = yoloV8.Detect(frame);

//绘制结果

//foreach (DetectionResult r in detResults)

//{

// Cv2.PutText(frame, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);

// Cv2.Rectangle(frame, r.Rect, Scalar.Red, thickness: 2);

//}

Cv2.PutText(frame, "preprocessTime:" + yoloV8.preprocessTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 30), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);

Cv2.PutText(frame, "inferTime:" + yoloV8.inferTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 70), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);

Cv2.PutText(frame, "postprocessTime:" + yoloV8.postprocessTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 110), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);

Cv2.PutText(frame, "totalTime:" + yoloV8.totalTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 150), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);

Cv2.PutText(frame, "video fps:" + videoFps.ToString("F2"), new OpenCvSharp.Point(10, 190), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);

Cv2.PutText(frame, "det fps:" + yoloV8.detFps.ToString("F2"), new OpenCvSharp.Point(10, 230), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);

List<Track> track = new List<Track>();

Track temp;

foreach (DetectionResult r in detResults)

{

RectBox _box = new RectBox(r.Rect.X, r.Rect.Y, r.Rect.Width, r.Rect.Height);

temp = new Track(_box, r.Confidence, ("label", r.ClassId), ("name", r.Class));

track.Add(temp);

}

var trackOutputs = tracker.Update(track);

foreach (var t in trackOutputs)

{

int x = (int)t.RectBox.X;

int y = (int)t.RectBox.Y;

int width = (int)t.RectBox.Width;

int height = (int)t.RectBox.Height;

if (x < 0)

{

x = 0;

}

if (y < 0)

{

y = 0;

}

if (x + width > mat_temp.Width)

{

width = mat_temp.Width - x;

}

if (y + height > mat_temp.Height)

{

height = mat_temp.Height - y;

}

Rect rect = new Rect(x, y, width, height);

string txt = $"{t["name"]}-{t.TrackId}:{t.Score:P0}";

//if (t["name"].ToString() != "Plate" && t["name"].ToString() != "Person")

//{

// Mat mat_car = new Mat(mat_temp, rect);

// KeyValuePair<string, float> cls = yoloV8_Cls.Detect(mat_car);

// mat_car.Dispose();

// txt += $" {cls.Key}:{cls.Value:P0}";

//}

//string txt = $"{t["name"]}-{t.TrackId}";

Cv2.PutText(frame, txt, new OpenCvSharp.Point(rect.TopLeft.X, rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);

Cv2.Rectangle(frame, rect, Scalar.Red, thickness: 2);

}

mat_temp.Dispose();

if (saveDetVideo)

{

vwriter.Write(frame);

}

Cv2.ImShow("DetectionResult 按下ESC,退出", frame);

// for test

// delay = 1;

delay = (int)(delay - _stopwatch.ElapsedMilliseconds);

if (delay <= 0)

{

delay = 1;

}

//Console.WriteLine("delay:" + delay.ToString()) ;

if (Cv2.WaitKey(delay) == 27 || Cv2.GetWindowProperty("DetectionResult 按下ESC,退出", WindowPropertyFlags.Visible) < 1.0)

{

Cv2.DestroyAllWindows();

vcapture.Release();

break;

}

}

Cv2.DestroyAllWindows();

vcapture.Release();

if (saveDetVideo)

{

vwriter.Release();

}

}

string model_path1 = "";

string model_path2 = "";

string onnxFilter = "onnx模型|*.onnx;";

private void button5_Click(object sender, EventArgs e)

{

if (video_path == "")

{

MessageBox.Show("请先选择视频!");

return;

}

if (model_path1 == "")

{

MessageBox.Show("选择模型1");

OpenFileDialog ofd = new OpenFileDialog();

ofd.Filter = onnxFilter;

ofd.InitialDirectory = Application.StartupPath + "\\model";

if (ofd.ShowDialog() != DialogResult.OK) return;

model_path1 = ofd.FileName;

}

if (model_path2 == "")

{

MessageBox.Show("选择模型2");

OpenFileDialog ofd1 = new OpenFileDialog();

ofd1.Filter = onnxFilter;

ofd1.InitialDirectory = Application.StartupPath + "\\model";

if (ofd1.ShowDialog() != DialogResult.OK) return;

model_path2 = ofd1.FileName;

}

textBox1.Text = "开始检测";

Application.DoEvents();

Task task = new Task(() =>

{

VideoCapture vcapture = new VideoCapture(video_path);

if (!vcapture.IsOpened())

{

MessageBox.Show("打开视频文件失败");

return;

}

YoloV8_Compare yoloV8 = new YoloV8_Compare(model_path1, model_path2, "model/lable.txt");

Mat frame = new Mat();

// 获取视频的fps

double videoFps = vcapture.Get(VideoCaptureProperties.Fps);

// 计算等待时间(毫秒)

int delay = (int)(1000 / videoFps);

Stopwatch _stopwatch = new Stopwatch();

Cv2.NamedWindow("DetectionResult 按下ESC,退出", WindowFlags.Normal);

Cv2.ResizeWindow("DetectionResult 按下ESC,退出", vcapture.FrameWidth, vcapture.FrameHeight / 2);

while (vcapture.Read(frame))

{

if (frame.Empty())

{

MessageBox.Show("读取失败");

return;

}

_stopwatch.Restart();

delay = (int)(1000 / videoFps);

Mat result = yoloV8.Detect(frame, videoFps.ToString("F2"));

Cv2.ImShow("DetectionResult 按下ESC,退出", result);

// for test

// delay = 1;

delay = (int)(delay - _stopwatch.ElapsedMilliseconds);

if (delay <= 0)

{

delay = 1;

}

//Console.WriteLine("delay:" + delay.ToString()) ;

// 如果按下ESC或点击关闭,退出循环

if (Cv2.WaitKey(delay) == 27 || Cv2.GetWindowProperty("DetectionResult 按下ESC,退出", WindowPropertyFlags.Visible) < 1.0)

{

Cv2.DestroyAllWindows();

vcapture.Release();

break;

}

}

textBox1.Invoke(new Action(() =>

{

textBox1.Text = "检测结束!";

}));

});

task.Start();

}

//保存

SaveFileDialog sdf = new SaveFileDialog();

private void button6_Click(object sender, EventArgs e)

{

if (pictureBox2.Image == null)

{

return;

}

Bitmap output = new Bitmap(pictureBox2.Image);

sdf.Title = "保存";

sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp";

if (sdf.ShowDialog() == DialogResult.OK)

{

switch (sdf.FilterIndex)

{

case 1:

{

output.Save(sdf.FileName, ImageFormat.Jpeg);

break;

}

case 2:

{

output.Save(sdf.FileName, ImageFormat.Png);

break;

}

case 3:

{

output.Save(sdf.FileName, ImageFormat.Bmp);

break;

}

}

MessageBox.Show("保存成功,位置:" + sdf.FileName);

}

}

/// <summary>

/// 选择模型

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void button7_Click(object sender, EventArgs e)

{

OpenFileDialog ofd = new OpenFileDialog();

ofd.Filter = onnxFilter;

ofd.InitialDirectory = Application.StartupPath + "\\model";

if (ofd.ShowDialog() != DialogResult.OK) return;

model_path = ofd.FileName;

yoloV8 = new YoloV8(model_path, "model/lable.txt");

}

}

}

using ByteTrack;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Drawing;
using System.Drawing.Imaging;
using System.Threading;
using System.Threading.Tasks;
using System.Windows.Forms;


namespace C__yolov8_OnnxRuntime_ByteTrack_Demo
{
    public partial class Form2 : Form
    {
        public Form2()
        {
            InitializeComponent();
        }

        string imgFilter = "图片|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";

        YoloV8 yoloV8;
        Mat image;

        string image_path = "";
        string model_path;

        string video_path = "";
        string videoFilter = "视频|*.mp4;*.avi;*.dav";
        VideoCapture vcapture;
        VideoWriter vwriter;
        bool saveDetVideo = false;
        ByteTracker tracker;

        /// <summary>
        /// 单图推理
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button2_Click(object sender, EventArgs e)
        {

            if (image_path == "")
            {
                return;
            }

            button2.Enabled = false;
            pictureBox2.Image = null;
            textBox1.Text = "";

            Application.DoEvents();

            image = new Mat(image_path);

            List<DetectionResult> detResults = yoloV8.Detect(image);

            //绘制结果
            Mat result_image = image.Clone();
            foreach (DetectionResult r in detResults)
            {
                string info = $"{r.Class}:{r.Confidence:P0}";
                //绘制
                Cv2.PutText(result_image, info, new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2);

            }

            if (pictureBox2.Image != null)
            {
                pictureBox2.Image.Dispose();
            }
            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
            textBox1.Text = yoloV8.DetectTime();

            button2.Enabled = true;

        }

        /// <summary>
        /// 窗体加载,初始化
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void Form1_Load(object sender, EventArgs e)
        {
            image_path = "test/dog.jpg";
            pictureBox1.Image = new Bitmap(image_path);

            model_path = "model/yolov8n.onnx";

            yoloV8 = new YoloV8(model_path, "model/lable.txt");
        }

        /// <summary>
        /// 选择图片
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button1_Click_1(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = imgFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);

            textBox1.Text = "";
            pictureBox2.Image = null;
        }

        /// <summary>
        /// 选择视频
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button4_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = videoFilter;
            ofd.InitialDirectory = Application.StartupPath + "\\test";
            if (ofd.ShowDialog() != DialogResult.OK) return;

            video_path = ofd.FileName;

            textBox1.Text = video_path;
            //pictureBox1.Image = null;
            //pictureBox2.Image = null;

            //button3_Click(null, null);

        }

        /// <summary>
        /// 视频推理
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button3_Click(object sender, EventArgs e)
        {
            if (video_path == "")
            {
                MessageBox.Show("请先选择视频!");
                return;
            }

            textBox1.Text = "开始检测";

            Application.DoEvents();

            Thread thread = new Thread(new ThreadStart(VideoDetection));

            thread.Start();
            thread.Join();

            textBox1.Text = "检测完成!";
        }

        void VideoDetection()
        {
            vcapture = new VideoCapture(video_path);
            if (!vcapture.IsOpened())
            {
                MessageBox.Show("打开视频文件失败");
                return;
            }

            tracker = new ByteTracker((int)vcapture.Fps, 200);

            Mat frame = new Mat();
            List<DetectionResult> detResults;

            // 获取视频的fps
            double videoFps = vcapture.Get(VideoCaptureProperties.Fps);
            // 计算等待时间(毫秒)
            int delay = (int)(1000 / videoFps);
            Stopwatch _stopwatch = new Stopwatch();

            if (checkBox1.Checked)
            {
                vwriter = new VideoWriter("out.mp4", FourCC.X264, vcapture.Fps, new OpenCvSharp.Size(vcapture.FrameWidth, vcapture.FrameHeight));
                saveDetVideo = true;
            }
            else
            {
                saveDetVideo = false;
            }

            Cv2.NamedWindow("DetectionResult 按下ESC,退出", WindowFlags.Normal);
            Cv2.ResizeWindow("DetectionResult 按下ESC,退出", vcapture.FrameWidth / 2, vcapture.FrameHeight / 2);

            while (vcapture.Read(frame))
            {
                if (frame.Empty())
                {
                    MessageBox.Show("读取失败");
                    return;
                }
                Mat mat_temp = frame.Clone();
                _stopwatch.Restart();

                delay = (int)(1000 / videoFps);

                detResults = yoloV8.Detect(frame);

                //绘制结果
                //foreach (DetectionResult r in detResults)
                //{
                //    Cv2.PutText(frame, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                //    Cv2.Rectangle(frame, r.Rect, Scalar.Red, thickness: 2);
                //}

                Cv2.PutText(frame, "preprocessTime:" + yoloV8.preprocessTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 30), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "inferTime:" + yoloV8.inferTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 70), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "postprocessTime:" + yoloV8.postprocessTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 110), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "totalTime:" + yoloV8.totalTime.ToString("F2") + "ms", new OpenCvSharp.Point(10, 150), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "video fps:" + videoFps.ToString("F2"), new OpenCvSharp.Point(10, 190), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                Cv2.PutText(frame, "det fps:" + yoloV8.detFps.ToString("F2"), new OpenCvSharp.Point(10, 230), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);

                List<Track> track = new List<Track>();
                Track temp;
                foreach (DetectionResult r in detResults)
                {
                    RectBox _box = new RectBox(r.Rect.X, r.Rect.Y, r.Rect.Width, r.Rect.Height);
                    temp = new Track(_box, r.Confidence, ("label", r.ClassId), ("name", r.Class));
                    track.Add(temp);
                }

                var trackOutputs = tracker.Update(track);

                foreach (var t in trackOutputs)
                {
                    int x = (int)t.RectBox.X;
                    int y = (int)t.RectBox.Y;
                    int width = (int)t.RectBox.Width;
                    int height = (int)t.RectBox.Height;

                    if (x < 0)
                    {
                        x = 0;
                    }

                    if (y < 0)
                    {
                        y = 0;
                    }

                    if (x + width > mat_temp.Width)
                    {
                        width = mat_temp.Width - x;
                    }

                    if (y + height > mat_temp.Height)
                    {
                        height = mat_temp.Height - y;
                    }

                    Rect rect = new Rect(x, y, width, height);

                    string txt = $"{t["name"]}-{t.TrackId}:{t.Score:P0}";
                    
                    //if (t["name"].ToString() != "Plate" && t["name"].ToString() != "Person")
                    //{
                    //    Mat mat_car = new Mat(mat_temp, rect);
                    //    KeyValuePair<string, float> cls = yoloV8_Cls.Detect(mat_car);
                    //    mat_car.Dispose();
                    //    txt += $" {cls.Key}:{cls.Value:P0}";
                    //}

                    //string txt = $"{t["name"]}-{t.TrackId}";
                    Cv2.PutText(frame, txt, new OpenCvSharp.Point(rect.TopLeft.X, rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2);
                    Cv2.Rectangle(frame, rect, Scalar.Red, thickness: 2);
                }
                mat_temp.Dispose();


                if (saveDetVideo)
                {
                    vwriter.Write(frame);
                }

                Cv2.ImShow("DetectionResult 按下ESC,退出", frame);

                // for test
                // delay = 1;
                delay = (int)(delay - _stopwatch.ElapsedMilliseconds);
                if (delay <= 0)
                {
                    delay = 1;
                }
                //Console.WriteLine("delay:" + delay.ToString()) ;
                if (Cv2.WaitKey(delay) == 27 || Cv2.GetWindowProperty("DetectionResult 按下ESC,退出", WindowPropertyFlags.Visible) < 1.0)
                {
                    Cv2.DestroyAllWindows();
                    vcapture.Release();
                    break;
                }
            }

            Cv2.DestroyAllWindows();
            vcapture.Release();
            if (saveDetVideo)
            {
                vwriter.Release();
            }

        }

        string model_path1 = "";
        string model_path2 = "";
        string onnxFilter = "onnx模型|*.onnx;";

        private void button5_Click(object sender, EventArgs e)
        {
            if (video_path == "")
            {
                MessageBox.Show("请先选择视频!");
                return;
            }

            if (model_path1 == "")
            {
                MessageBox.Show("选择模型1");
                OpenFileDialog ofd = new OpenFileDialog();
                ofd.Filter = onnxFilter;
                ofd.InitialDirectory = Application.StartupPath + "\\model";
                if (ofd.ShowDialog() != DialogResult.OK) return;
                model_path1 = ofd.FileName;
            }

            if (model_path2 == "")
            {
                MessageBox.Show("选择模型2");
                OpenFileDialog ofd1 = new OpenFileDialog();
                ofd1.Filter = onnxFilter;
                ofd1.InitialDirectory = Application.StartupPath + "\\model";
                if (ofd1.ShowDialog() != DialogResult.OK) return;
                model_path2 = ofd1.FileName;
            }

            textBox1.Text = "开始检测";
            Application.DoEvents();

            Task task = new Task(() =>
            {
                VideoCapture vcapture = new VideoCapture(video_path);
                if (!vcapture.IsOpened())
                {
                    MessageBox.Show("打开视频文件失败");
                    return;
                }

                YoloV8_Compare yoloV8 = new YoloV8_Compare(model_path1, model_path2, "model/lable.txt");

                Mat frame = new Mat();

                // 获取视频的fps
                double videoFps = vcapture.Get(VideoCaptureProperties.Fps);
                // 计算等待时间(毫秒)
                int delay = (int)(1000 / videoFps);
                Stopwatch _stopwatch = new Stopwatch();

                Cv2.NamedWindow("DetectionResult 按下ESC,退出", WindowFlags.Normal);
                Cv2.ResizeWindow("DetectionResult 按下ESC,退出", vcapture.FrameWidth, vcapture.FrameHeight / 2);

                while (vcapture.Read(frame))
                {
                    if (frame.Empty())
                    {
                        MessageBox.Show("读取失败");
                        return;
                    }

                    _stopwatch.Restart();

                    delay = (int)(1000 / videoFps);

                    Mat result = yoloV8.Detect(frame, videoFps.ToString("F2"));

                    Cv2.ImShow("DetectionResult 按下ESC,退出", result);

                    // for test
                    // delay = 1;
                    delay = (int)(delay - _stopwatch.ElapsedMilliseconds);
                    if (delay <= 0)
                    {
                        delay = 1;
                    }
                    //Console.WriteLine("delay:" + delay.ToString()) ;
                    // 如果按下ESC或点击关闭,退出循环
                    if (Cv2.WaitKey(delay) == 27 || Cv2.GetWindowProperty("DetectionResult 按下ESC,退出", WindowPropertyFlags.Visible) < 1.0)
                    {
                        Cv2.DestroyAllWindows();
                        vcapture.Release();
                        break;
                    }
                }

                textBox1.Invoke(new Action(() =>
                {
                    textBox1.Text = "检测结束!";

                }));

            });
            task.Start();

        }

        //保存
        SaveFileDialog sdf = new SaveFileDialog();
        private void button6_Click(object sender, EventArgs e)
        {
            if (pictureBox2.Image == null)
            {
                return;
            }
            Bitmap output = new Bitmap(pictureBox2.Image);
            sdf.Title = "保存";
            sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp";
            if (sdf.ShowDialog() == DialogResult.OK)
            {
                switch (sdf.FilterIndex)
                {
                    case 1:
                        {
                            output.Save(sdf.FileName, ImageFormat.Jpeg);
                            break;
                        }
                    case 2:
                        {
                            output.Save(sdf.FileName, ImageFormat.Png);
                            break;
                        }
                    case 3:
                        {
                            output.Save(sdf.FileName, ImageFormat.Bmp);
                            break;
                        }
                }
                MessageBox.Show("保存成功,位置:" + sdf.FileName);
            }

        }

        /// <summary>
        /// 选择模型
        /// </summary>
        /// <param name="sender"></param>
        /// <param name="e"></param>
        private void button7_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = onnxFilter;
            ofd.InitialDirectory = Application.StartupPath + "\\model";
            if (ofd.ShowDialog() != DialogResult.OK) return;
            model_path = ofd.FileName;
            yoloV8 = new YoloV8(model_path, "model/lable.txt");

        }
    }

}

下载

源码下载

相关推荐
MUTA️1 分钟前
RT-DETR学习笔记(2)
人工智能·笔记·深度学习·学习·机器学习·计算机视觉
开发者每周简报36 分钟前
求职市场变化
人工智能·面试·职场和发展
AI前沿技术追踪1 小时前
OpenAI 12天发布会:AI革命的里程碑@附35页PDF文件下载
人工智能
余~~185381628001 小时前
稳定的碰一碰发视频、碰一碰矩阵源码技术开发,支持OEM
开发语言·人工智能·python·音视频
galileo20161 小时前
LLM与金融
人工智能
DREAM依旧2 小时前
隐马尔科夫模型|前向算法|Viterbi 算法
人工智能
GocNeverGiveUp2 小时前
机器学习2-NumPy
人工智能·机器学习·numpy
B站计算机毕业设计超人3 小时前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
学术头条3 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
18号房客3 小时前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn