详解 ClickHouse 的 SQL 操作

传统关系型数据库(以 MySQL 为例)的 SQL 语句,ClickHouse 基本都支持

一、插入

sql 复制代码
--语法:
insert into table_name values(xxxxxx),(yyyyyyy),...;

insert into table_name select xxxxx from table_name2 where yyyyy;

二、更新和删除

作为 OLAP 数据库,ClickHouse 本身不太擅长更新和删除操作,它提供了 Delete 和 Update 的能力,不同于 OLTP 数据库的更新和删除操作,这类操作被称为 Mutation 查询,它可以看做 Alter 的一种。

sql 复制代码
--更新
alter table table_name update column=value where condition;

--删除
alter table table_name delete where condition;
  • Mutation 语句是一种很"重"的操作,而且不支持事务
  • ClickHouse 更新和删除的本质操作是将原有的分区重新创建一份并把更新或删除后的新数据写入,然后将原有分区打上逻辑上的失效标记,此时原有数据依然存储在磁盘,直到触发分区合并的时候,才会真正删除旧数据释放磁盘空间
  • 实际生产中不建议对 ClickHouse 的表数据进行更新和删除

三、查询

1. 基本查询

sql 复制代码
select columns from table_name where conditions group by column order by column;

--1. 支持子查询
select columns from (select columns from table_name where conditions);

--2. 支持 CTE(Common Table Expression 公用表表达式 with 子句)
with table_name2 as (
	select columns from table_name where conditions
)

select * from table_name2

2. 关联查询

支持各种 JOIN,但是 JOIN 操作无法使用缓存,所以即使是两次相同的 JOIN 语句,ClickHouse 也会视为两条新 SQL

3. 基本函数

sql 复制代码
--条件判断
if(condition, then, else) --条件值为非0则 then 否则 else
multiIf(cond1, then1, cond2, then2, ...., else) --类似于 case when then else end 函数

4. 多维分析函数

sql 复制代码
--with rollup:上卷
group by a,b with rollup --统计的维度组合为 (), a, (a,b)


--with cube:多维分析
group by a,b with cube --统计的维度组合为 (), a, b, (a,b)

--with totals:总计
group by a,b with totals --统计的维度组合为 (), (a,b)

四、alter 操作

sql 复制代码
--新增字段
alter table table_name add column col_name col_type after col_name1;

--修改字段类型
alter table table_name modify column col_name new_col_type;

--删除字段
alter table table_name drop column col_name;

五、导出数据

更多支持格式参照:https://clickhouse.tech/docs/en/interfaces/formats/

shell 复制代码
#将查询出的数据导出为 csv 文件
clickhouse-client --query "select * from t_order_mt where create_time='2020-06-01 12:00:00'" --format CSVWithNames > /opt/module/data/rs1.csv
相关推荐
Mephisto.java4 分钟前
【大数据学习 | kafka高级部分】kafka的优化参数整理
大数据·sql·oracle·kafka·json·database
道可云5 分钟前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
成都古河云16 分钟前
智慧场馆:安全、节能与智能化管理的未来
大数据·运维·人工智能·安全·智慧城市
软工菜鸡23 分钟前
预训练语言模型BERT——PaddleNLP中的预训练模型
大数据·人工智能·深度学习·算法·语言模型·自然语言处理·bert
秋意钟24 分钟前
MySQL日期类型选择建议
数据库·mysql
山海青风31 分钟前
第七篇: BigQuery中的复杂SQL查询
sql·googlecloud
Dxy12393102161 小时前
python下载pdf
数据库·python·pdf
武子康2 小时前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
桀桀桀桀桀桀2 小时前
数据库中的用户管理和权限管理
数据库·mysql
lzhlizihang3 小时前
【Hive sql 面试题】求出各类型专利top 10申请人,以及对应的专利申请数(难)
大数据·hive·sql·面试题