详解 ClickHouse 的 SQL 操作

传统关系型数据库(以 MySQL 为例)的 SQL 语句,ClickHouse 基本都支持

一、插入

sql 复制代码
--语法:
insert into table_name values(xxxxxx),(yyyyyyy),...;

insert into table_name select xxxxx from table_name2 where yyyyy;

二、更新和删除

作为 OLAP 数据库,ClickHouse 本身不太擅长更新和删除操作,它提供了 Delete 和 Update 的能力,不同于 OLTP 数据库的更新和删除操作,这类操作被称为 Mutation 查询,它可以看做 Alter 的一种。

sql 复制代码
--更新
alter table table_name update column=value where condition;

--删除
alter table table_name delete where condition;
  • Mutation 语句是一种很"重"的操作,而且不支持事务
  • ClickHouse 更新和删除的本质操作是将原有的分区重新创建一份并把更新或删除后的新数据写入,然后将原有分区打上逻辑上的失效标记,此时原有数据依然存储在磁盘,直到触发分区合并的时候,才会真正删除旧数据释放磁盘空间
  • 实际生产中不建议对 ClickHouse 的表数据进行更新和删除

三、查询

1. 基本查询

sql 复制代码
select columns from table_name where conditions group by column order by column;

--1. 支持子查询
select columns from (select columns from table_name where conditions);

--2. 支持 CTE(Common Table Expression 公用表表达式 with 子句)
with table_name2 as (
	select columns from table_name where conditions
)

select * from table_name2

2. 关联查询

支持各种 JOIN,但是 JOIN 操作无法使用缓存,所以即使是两次相同的 JOIN 语句,ClickHouse 也会视为两条新 SQL

3. 基本函数

sql 复制代码
--条件判断
if(condition, then, else) --条件值为非0则 then 否则 else
multiIf(cond1, then1, cond2, then2, ...., else) --类似于 case when then else end 函数

4. 多维分析函数

sql 复制代码
--with rollup:上卷
group by a,b with rollup --统计的维度组合为 (), a, (a,b)


--with cube:多维分析
group by a,b with cube --统计的维度组合为 (), a, b, (a,b)

--with totals:总计
group by a,b with totals --统计的维度组合为 (), (a,b)

四、alter 操作

sql 复制代码
--新增字段
alter table table_name add column col_name col_type after col_name1;

--修改字段类型
alter table table_name modify column col_name new_col_type;

--删除字段
alter table table_name drop column col_name;

五、导出数据

更多支持格式参照:https://clickhouse.tech/docs/en/interfaces/formats/

shell 复制代码
#将查询出的数据导出为 csv 文件
clickhouse-client --query "select * from t_order_mt where create_time='2020-06-01 12:00:00'" --format CSVWithNames > /opt/module/data/rs1.csv
相关推荐
川西胖墩墩3 小时前
智能交通管理:实时路况优化与拥堵预测
大数据
重生之绝世牛码3 小时前
Linux软件安装 —— PostgreSQL高可用集群安装(postgreSQL + repmgr主从复制 + keepalived故障转移)
大数据·linux·运维·数据库·postgresql·软件安装·postgresql高可用
数据知道3 小时前
PostgreSQL 实战:详解 UPSERT(INSERT ON CONFLICT)
数据库·python·postgresql
源力祁老师3 小时前
Odoo日志系统核心组件_logger
网络·数据库·php
电商API&Tina4 小时前
电商API接口的应用与简要分析||taobao|jd|微店
大数据·python·数据分析·json
洋不写bug5 小时前
数据库基础核心操作——CRUD,超详细解析,搭配表格讲解和需求的实现。
数据库
马猴烧酒.5 小时前
JAVA后端用户登录与鉴权详解
java·数据库·sql
不会c+5 小时前
Elasticsearch入门
大数据·elasticsearch·搜索引擎
heartbeat..5 小时前
Redis 常用命令全解析:基础、进阶与场景化实战
java·数据库·redis·缓存
数据知道5 小时前
PostgreSQL 实战:一文掌握如何优雅的进行递归查询?
大数据·数据库·postgresql