联发科MT8666-NNAPI移植

1、adb常用指令

python 复制代码
adb --s [device] push src dst
adb --s [device] shell
adb --s [device] pull src dst

2、模型适配过程中onnx模型修改

#加载ONNX模型

model = onnx.load("test.onnx")

#保存ONNX模型
onnx.save(model, 'save_path.onnx')

#OP节点列表,是List, 可以增删改查
model.graph.node

#输入节点名称
model.graph.input

#输出节点名称
model.graph.output

#参数节点
model.graph.initializer
for tensor in model.graph.initializer:
if tensor.name == "attrinet.conv_2_dw.conv.bias":
tensor.raw_data = np.ones([16], dtype=np.int32).tobytes()

#改变任意OP名称或者属性
model.graph.node[0].name= '自定义'
model.graph.node[0].op_type= '自定义'
#改变输入的batch,例如 1x100x100x3 -> 1x3x100x100
model.graph.input[0].type.tensor_type.shape.dim[1].dim_value=3

#也可以采用下面方法创建新的节点插入
model.graph.input[0].type.tensor_type.shape.dim[3].dim_value=100
#改变输入的类型,详情参见GitHub onnx/onnx/onnx-ml.proto TensorProto DataType枚举,1--float 2--uint8 3--int8 7--int64
model.graph.input[0].type.tensor_type.elem_type=3
#ONNX模型采用tensor与node(op)将整个网络构建起来,node中输入输出为tensor的名称,用来连接各个tensor,中间的节点tensor不用创建,网络的输入输出节点需要创建tensor。Tensor常用的2种创建方法,样例如下:
(1) onnx.helper.make_tensor_value_info(name=output, elem_type=type, shape=[]), #仅根据形状创建,用于输入输出节点
onnx.helper.make_tensor_value_info("out_1", TensorProto.FLOAT, [1,3,224]),

(2) onnx.helper.make_tensor(name='const_tensor', data_type, dims=values.shape, vals=values.flatten()),#根据numpy数据创建

#构建OP节点,
conv_node = onnx.helper.make_node(op_type='Conv2dInt', inputs=input_names, outputs=output_names, name='Conv2dInt_1', **attribute)
input_names、output_names 是字符串数组,为tensor的名称,例如:input_names=['name1', 'name2']
attribute是字典,如:
attribute = {
"data_bits": xxx,
"group": xxx,
"scale_o": xxx,
...
}

#增加OP节点
model.graph.node.append(conv_node)
model.graph.node.insert(insert_pos, conv_node)
#增加输入、输出tensor节点
output_node = onnx.helper.make_tensor_value_info("out_1", TensorProto.FLOAT, [1,3,224])
model.graph.output.append(output_node) // or input
#增加参数节点
conv_node_bias = onnx.numpy_helper.from_array(bias_data, name="conv_node_bias_name")
model.graph.initializer.append(conv_node_bias)
其中bias_data可从原conv节点取得:
bias_name = node.input[2]
for data in module.graph.initializer:
if data.name == bias_name:
bias_data = onnx.numpy_helper.to_array(data)

#特殊节点-constant增加,data_type参见GitHub onnx/onnx/onnx-ml.proto TensorProto DataType枚举
value=onnx.helper.make_tensor(name='const_tensor', data_type=1, dims=numpy_data.shape, vals=numpy_data.flatten())
constant_node = onnx.helper.make_node(op_type='Constant', inputs=[], outputs=[output_name], name='constant1', value = value)

#读取ONNX的参数tensor格式,转换为numpy
#constant节点:
onnx.numpy_helper.to_array(onnx_node.attribute[0].t)
constant_value = onnx_node.attribute[0].t.raw_data
dims = onnx_node.attribute[0].t.dims
dtype = onnx_node.attribute[0].t.data_type

#initialize的参数:
onnx.numpy_helper.to_array(params)
特别数值,若数值为1个数,则导出的非numpy格式,也是一个数值

#获取节点数量
def getNodeNum(model):
return len(model.graph.node)

#获取节点类型
def getNodetype(model):
op_name = []
for i in range(len(model.graph.node)):
if model.graph.node[i].op_type not in op_name:
op_name.append(model.graph.node[i].op_type)
return op_name

#获取节点名列表
def getNodeNameList(model):
NodeNameList = []
for i in range(len(model.graph.node)):
NodeNameList.append(model.graph.node[i].name)
return NodeNameList

#获取模型的输入信息
def getModelInputInfo(model):
return model.graph.input[0]

#获取模型的输出信息
def getModelOutputInfo(model):
return model.graph.output[0]

#Xlite指定位置切子图
xlite/tools/xlite/layout_convert/layout_convert.py line 170:
if node.name in['node_name'] //node_name以后将会被切掉

#debug看子图信息的地方
xlite/tools/xlite/packer/nnapi.py line 213:
graph, max_sub_graph = _get_layout_optimizer(g, config['layout_out'])

#升维、降维
unsqueeze、squeeze

3、Mtk8666 android npu模型

a、打包报错:

复制代码
RuntimeError:This is an invalid model. Error in Node:OnnxInferDeQuant-814_815:No Op registered for OnnxInferDeQuant with domain_verion of 12

原因:domain位置不对,需要更新模型

b、引擎效率获取命令:

cat log/xxx.log |grep average

4、引擎集成

摄像头规格:

图像格式:gray

图像大小:640*480

帧率:30fps

8666平台: 8核

a、集成过程

(1) 只需要视觉DMS,其他不需要

(2) 使用MTK8666配置文件 MTK8666.json

(3) 拷贝npu版本库里的模型及库文件至工程

(4) 编译部署:build_android.bat → delivery.bat

(5)摄像头无法获取图像而导致卡住的问题已提相关同事处理。

b、车机部署

(1) target部署至/data/local/tmp/bin下

(2) 车机需要联网(引擎需要权限)

(3) 需要先运行Carcorder APK,再运行DMS APK

c、运行

复制代码
#su
#cd /data/local/tmp/bin/
#./test.sh
相关推荐
Fcy64810 小时前
Linux下的项目自动化构建-make\makefile详解
linux·运维·自动化·makefile·make
Danceful_YJ10 小时前
30.注意力汇聚:Nadaraya-Watson 核回归
pytorch·python·深度学习
阳光明媚sunny10 小时前
invalidate(),postInvalidate()和requestLayout()区别
android
挽安学长10 小时前
Claude Code 重大更新:支持一键原生安装,彻底别了 Node.js,附Claudecode国内使用最新方式!
人工智能
FreeCode10 小时前
LangChain1.0智能体开发:人机协作
python·langchain·agent
DevUI团队10 小时前
🚀 MateChat发布V1.10.0版本,支持附件上传及体验问题修复,欢迎体验~
前端·vue.js·人工智能
用户416596736935510 小时前
兼容 Android Q+ 实现 WebView 图片长按保存与复制
android
美人鱼战士爱学习10 小时前
KAG: Boosting LLMs in Professional Domains via Knowledge Augmented Generation
人工智能·集成学习·boosting
有Li10 小时前
融合先验文本与解剖学知识的多模态回归网络用于舌鳞状细胞癌浸润深度的自动预测|文献速递-文献分享
论文阅读·人工智能·医学生
2501_9304122710 小时前
如何添加清华源到Conda?
开发语言·python·conda